| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindf | GIF version | ||
| Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindf.nf | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| setindf | ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setindft 15975 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | |
| 2 | setindf.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | mpg 1475 | 1 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-ral 2490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |