Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  setindf GIF version

Theorem setindf 16239
Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
Hypothesis
Ref Expression
setindf.nf 𝑦𝜑
Assertion
Ref Expression
setindf (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem setindf
StepHypRef Expression
1 setindft 16238 . 2 (∀𝑥𝑦𝜑 → (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑))
2 setindf.nf . 2 𝑦𝜑
31, 2mpg 1477 1 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373  wnf 1486  [wsb 1788  wral 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-cleq 2202  df-clel 2205  df-ral 2493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator