| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindf | GIF version | ||
| Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindf.nf | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| setindf | ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setindft 16238 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | |
| 2 | setindf.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | mpg 1477 | 1 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 Ⅎwnf 1486 [wsb 1788 ∀wral 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-cleq 2202 df-clel 2205 df-ral 2493 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |