| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindf | GIF version | ||
| Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindf.nf | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| setindf | ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setindft 15611 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) | |
| 2 | setindf.nf | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | mpg 1465 | 1 ⊢ (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 [wsb 1776 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |