HomeHome Intuitionistic Logic Explorer
Theorem List (p. 152 of 153)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15101-15200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembj-vprc 15101 vprc 4150 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  _V
 
Theorembj-nvel 15102 nvel 4151 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  A
 
Theorembj-vnex 15103 vnex 4149 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x  x  =  _V
 
Theorembdinex1 15104 Bounded version of inex1 4152. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( A  i^i  B )  e. 
 _V
 
Theorembdinex2 15105 Bounded version of inex2 4153. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( B  i^i  A )  e. 
 _V
 
Theorembdinex1g 15106 Bounded version of inex1g 4154. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   =>    |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theorembdssex 15107 Bounded version of ssex 4155. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theorembdssexi 15108 Bounded version of ssexi 4156. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theorembdssexg 15109 Bounded version of ssexg 4157. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theorembdssexd 15110 Bounded version of ssexd 4158. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A  C_  B )   &    |- BOUNDED  A   =>    |-  ( ph  ->  A  e.  _V )
 
Theorembdrabexg 15111* Bounded version of rabexg 4161. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |- BOUNDED  A   =>    |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theorembj-inex 15112 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  i^i  B )  e.  _V )
 
Theorembj-intexr 15113 intexr 4168 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
 
Theorembj-intnexr 15114 intnexr 4169 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  =  _V  ->  -. 
 |^| A  e.  _V )
 
Theorembj-zfpair2 15115 Proof of zfpair2 4228 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  { x ,  y }  e.  _V
 
Theorembj-prexg 15116 Proof of prexg 4229 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  { A ,  B }  e.  _V )
 
Theorembj-snexg 15117 snexg 4202 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theorembj-snex 15118 snex 4203 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 { A }  e.  _V
 
Theorembj-sels 15119* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
 |-  ( A  e.  V  ->  E. x  A  e.  x )
 
Theorembj-axun2 15120* axun2 4453 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theorembj-uniex2 15121* uniex2 4454 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y  y  =  U. x
 
Theorembj-uniex 15122 uniex 4455 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 U. A  e.  _V
 
Theorembj-uniexg 15123 uniexg 4457 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theorembj-unex 15124 unex 4459 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 15125 Bounded version of unexb 4460. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 15126 unexg 4461 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
 
Theorembj-sucexg 15127 sucexg 4515 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  suc 
 A  e.  _V )
 
Theorembj-sucex 15128 sucex 4516 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 suc  A  e.  _V
 
13.2.9.1  Delta_0-classical logic
 
Axiomax-bj-d0cl 15129 Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.)
 |- BOUNDED  ph   =>    |- DECID  ph
 
Theorembj-d0clsepcl 15130 Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.)
 |- DECID  ph
 
13.2.9.2  Inductive classes and the class of natural number ordinals
 
Syntaxwind 15131 Syntax for inductive classes.
 wff Ind  A
 
Definitiondf-bj-ind 15132* Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A 
 <->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
 
Theorembj-indsuc 15133 A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  (Ind  A  ->  ( B  e.  A  ->  suc  B  e.  A ) )
 
Theorembj-indeq 15134 Equality property for Ind. (Contributed by BJ, 30-Nov-2019.)
 |-  ( A  =  B  ->  (Ind 
 A 
 <-> Ind 
 B ) )
 
Theorembj-bdind 15135 Boundedness of the formula "the setvar  x is an inductive class". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED Ind  x
 
Theorembj-indint 15136* The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  |^| { x  e.  A  | Ind  x }
 
Theorembj-indind 15137* If  A is inductive and  B is "inductive in  A", then  ( A  i^i  B ) is inductive. (Contributed by BJ, 25-Oct-2020.)
 |-  (
 (Ind  A  /\  ( (/)  e.  B  /\  A. x  e.  A  ( x  e.  B  ->  suc  x  e.  B ) ) ) 
 -> Ind  ( A  i^i  B ) )
 
Theorembj-dfom 15138 Alternate definition of  om, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
 |-  om  =  |^| { x  | Ind  x }
 
Theorembj-omind 15139  om is an inductive class. (Contributed by BJ, 30-Nov-2019.)
 |- Ind  om
 
Theorembj-omssind 15140  om is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (Ind 
 A  ->  om  C_  A ) )
 
Theorembj-ssom 15141* A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A. x (Ind  x  ->  A  C_  x )  <->  A  C_  om )
 
Theorembj-om 15142* A set is equal to  om if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. x (Ind  x  ->  A  C_  x ) ) ) )
 
Theorembj-2inf 15143* Two formulations of the axiom of infinity (see ax-infvn 15146 and bj-omex 15147) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
 |-  ( om  e.  _V  <->  E. x (Ind  x  /\  A. y (Ind  y  ->  x  C_  y )
 ) )
 
13.2.9.3  The first three Peano postulates

The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4611 and peano3 4613 already show this. In this section, we prove bj-peano2 15144 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms.

 
Theorembj-peano2 15144 Constructive proof of peano2 4612. Temporary note: another possibility is to simply replace sucexg 4515 with bj-sucexg 15127 in the proof of peano2 4612. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  suc  A  e.  om )
 
Theorempeano5set 15145* Version of peano5 4615 when  om  i^i  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( om  i^i  A )  e.  V  ->  (
 ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A ) )
 
13.2.10  CZF: Infinity

In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements.

 
13.2.10.1  The set of natural number ordinals

In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 15146) and deduce that the class  om of natural number ordinals is a set (bj-omex 15147).

 
Axiomax-infvn 15146* Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4605) from which one then proves, using full separation, that the wanted set exists (omex 4610). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.)
 |-  E. x (Ind  x  /\  A. y
 (Ind  y  ->  x  C_  y ) )
 
Theorembj-omex 15147 Proof of omex 4610 from ax-infvn 15146. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.)
 |-  om  e.  _V
 
13.2.10.2  Peano's fifth postulate

In this section, we give constructive proofs of two versions of Peano's fifth postulate.

 
Theorembdpeano5 15148* Bounded version of peano5 4615. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A )
 
Theoremspeano5 15149* Version of peano5 4615 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc 
 x  e.  A ) )  ->  om  C_  A )
 
13.2.10.3  Bounded induction and Peano's fourth postulate

In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers.

 
Theoremfindset 15150* Bounded induction (principle of induction when  A is assumed to be a set) allowing a proof from basic constructive axioms. See find 4616 for a nonconstructive proof of the general case. See bdfind 15151 for a proof when  A is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( ( A  C_  om  /\  (/) 
 e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 )
 
Theorembdfind 15151* Bounded induction (principle of induction when  A is assumed to be bounded), proved from basic constructive axioms. See find 4616 for a nonconstructive proof of the general case. See findset 15150 for a proof when  A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  om 
 /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  A  =  om )
 
Theorembj-bdfindis 15152* Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4617 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4617, finds2 4618, finds1 4619. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-bdfindisg 15153* Version of bj-bdfindis 15152 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15152 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  (
 ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-bdfindes 15154 Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15152 for explanations. From this version, it is easy to prove the bounded version of findes 4620. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   =>    |-  ( ( [. (/)  /  x ].
 ph  /\  A. x  e. 
 om  ( ph  ->  [.
 suc  x  /  x ].
 ph ) )  ->  A. x  e.  om  ph )
 
Theorembj-nn0suc0 15155* Constructive proof of a variant of nn0suc 4621. For a constructive proof of nn0suc 4621, see bj-nn0suc 15169. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
 
Theorembj-nntrans 15156 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  ( B  e.  A  ->  B 
 C_  A ) )
 
Theorembj-nntrans2 15157 A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Tr  A )
 
Theorembj-nnelirr 15158 A natural number does not belong to itself. Version of elirr 4558 for natural numbers, which does not require ax-setind 4554. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  -.  A  e.  A )
 
Theorembj-nnen2lp 15159 A version of en2lp 4571 for natural numbers, which does not require ax-setind 4554.

Note: using this theorem and bj-nnelirr 15158, one can remove dependency on ax-setind 4554 from nntri2 6518 and nndcel 6524; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)

 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  -.  ( A  e.  B  /\  B  e.  A ) )
 
Theorembj-peano4 15160 Remove from peano4 4614 dependency on ax-setind 4554. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
 
Theorembj-omtrans 15161 The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4623.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

 |-  ( A  e.  om  ->  A  C_ 
 om )
 
Theorembj-omtrans2 15162 The set  om is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Tr  om
 
Theorembj-nnord 15163 A natural number is an ordinal class. Constructive proof of nnord 4629. Can also be proved from bj-nnelon 15164 if the latter is proved from bj-omssonALT 15168. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  Ord  A )
 
Theorembj-nnelon 15164 A natural number is an ordinal. Constructive proof of nnon 4627. Can also be proved from bj-omssonALT 15168. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
 |-  ( A  e.  om  ->  A  e.  On )
 
Theorembj-omord 15165 The set  om is an ordinal class. Constructive proof of ordom 4624. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  Ord  om
 
Theorembj-omelon 15166 The set  om is an ordinal. Constructive proof of omelon 4626. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)
 |-  om  e.  On
 
Theorembj-omsson 15167 Constructive proof of omsson 4630. See also bj-omssonALT 15168. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
 |-  om  C_ 
 On
 
Theorembj-omssonALT 15168 Alternate proof of bj-omsson 15167. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  C_ 
 On
 
Theorembj-nn0suc 15169* Proof of (biconditional form of) nn0suc 4621 from the core axioms of CZF. See also bj-nn0sucALT 15183. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
13.2.11  CZF: Set induction

In this section, we add the axiom of set induction to the core axioms of CZF.

 
13.2.11.1  Set induction

In this section, we prove some variants of the axiom of set induction.

 
Theoremsetindft 15170* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  ( A. x F/ y ph  ->  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph ) )
 
Theoremsetindf 15171* Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ y ph   =>    |-  ( A. x (
 A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph )
 
Theoremsetindis 15172* Axiom of set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps )
 )   &    |-  ( x  =  y 
 ->  ( ch  ->  ph )
 )   =>    |-  ( A. y (
 A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Axiomax-bdsetind 15173* Axiom of bounded set induction. (Contributed by BJ, 28-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A. a (
 A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
 
Theorembdsetindis 15174* Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ y ph   &    |-  F/ y ps   &    |-  ( x  =  z  ->  ( ph  ->  ps ) )   &    |-  ( x  =  y  ->  ( ch  ->  ph ) )   =>    |-  ( A. y ( A. z  e.  y  ps  ->  ch )  ->  A. x ph )
 
Theorembj-inf2vnlem1 15175* Lemma for bj-inf2vn 15179. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
 
Theorembj-inf2vnlem2 15176* Lemma for bj-inf2vnlem3 15177 and bj-inf2vnlem4 15178. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A. u (
 A. t  e.  u  ( t  e.  A  ->  t  e.  Z ) 
 ->  ( u  e.  A  ->  u  e.  Z ) ) ) )
 
Theorembj-inf2vnlem3 15177* Lemma for bj-inf2vn 15179. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  Z   =>    |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vnlem4 15178* Lemma for bj-inf2vn2 15180. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  (Ind  Z  ->  A  C_  Z ) )
 
Theorembj-inf2vn 15179* A sufficient condition for  om to be a set. See bj-inf2vn2 15180 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Theorembj-inf2vn2 15180* A sufficient condition for  om to be a set; unbounded version of bj-inf2vn 15179. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  (
 A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
 )
 
Axiomax-inf2 15181* Another axiom of infinity in a constructive setting (see ax-infvn 15146). (Contributed by BJ, 14-Nov-2019.) (New usage is discouraged.)
 |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
 
Theorembj-omex2 15182 Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 15146 (see bj-2inf 15143 for the equivalence of the latter with bj-omex 15147). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  om  e.  _V
 
Theorembj-nn0sucALT 15183* Alternate proof of bj-nn0suc 15169, also constructive but from ax-inf2 15181, hence requiring ax-bdsetind 15173. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  om  <->  ( A  =  (/) 
 \/  E. x  e.  om  A  =  suc  x ) )
 
13.2.11.2  Full induction

In this section, using the axiom of set induction, we prove full induction on the set of natural numbers.

 
Theorembj-findis 15184* Principle of induction, using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See bj-bdfindis 15152 for a bounded version not requiring ax-setind 4554. See finds 4617 for a proof in IZF. From this version, it is easy to prove of finds 4617, finds2 4618, finds1 4619. (Contributed by BJ, 22-Dec-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   =>    |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
 
Theorembj-findisg 15185* Version of bj-findis 15184 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15184 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  F/ x ps   &    |-  F/ x ch   &    |-  F/ x th   &    |-  ( x  =  (/)  ->  ( ps  ->  ph ) )   &    |-  ( x  =  y  ->  ( ph  ->  ch ) )   &    |-  ( x  =  suc  y  ->  ( th  ->  ph ) )   &    |-  F/_ x A   &    |-  F/ x ta   &    |-  ( x  =  A  ->  (
 ph  ->  ta ) )   =>    |-  ( ( ps 
 /\  A. y  e.  om  ( ch  ->  th )
 )  ->  ( A  e.  om  ->  ta )
 )
 
Theorembj-findes 15186 Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15184 for explanations. From this version, it is easy to prove findes 4620. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( [. (/)  /  x ]. ph 
 /\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
 )  ->  A. x  e. 
 om  ph )
 
13.2.12  CZF: Strong collection

In this section, we state the axiom scheme of strong collection, which is part of CZF set theory.

 
Axiomax-strcoll 15187* Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function on  a, or equivalently a collection of nonempty classes indexed by  a, and the axiom asserts the existence of a set  b which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. That second conjunct is what makes it "strong", compared to the axiom scheme of collection ax-coll 4133. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a
 ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcoll2 15188* Version of ax-strcoll 15187 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |-  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) )
 
Theoremstrcollnft 15189* Closed form of strcollnf 15190. (Contributed by BJ, 21-Oct-2019.)
 |-  ( A. x A. y F/ b ph  ->  ( A. x  e.  a  E. y ph  ->  E. b
 ( A. x  e.  a  E. y  e.  b  ph 
 /\  A. y  e.  b  E. x  e.  a  ph ) ) )
 
Theoremstrcollnf 15190* Version of ax-strcoll 15187 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15188 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15188 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
TheoremstrcollnfALT 15191* Alternate proof of strcollnf 15190, not using strcollnft 15189. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   =>    |-  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
 A. y  e.  b  E. x  e.  a  ph ) )
 
13.2.13  CZF: Subset collection

In this section, we state the axiom scheme of subset collection, which is part of CZF set theory.

 
Axiomax-sscoll 15192* Axiom scheme of subset collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. The antecedent means that  ph represents a multivalued function from  a to  b, or equivalently a collection of nonempty subsets of  b indexed by  a, and the consequent asserts the existence of a subset of  c which "collects" at least one element in the image of each  x  e.  a and which is made only of such elements. The axiom asserts the existence, for any sets  a ,  b, of a set  c such that that implication holds for any value of the parameter  z of  ph. (Contributed by BJ, 5-Oct-2019.)
 |-  A. a A. b E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
Theoremsscoll2 15193* Version of ax-sscoll 15192 with two disjoint variable conditions removed and without initial universal quantifiers. (Contributed by BJ, 5-Oct-2019.)
 |-  E. c A. z ( A. x  e.  a  E. y  e.  b  ph  ->  E. d  e.  c  ( A. x  e.  a  E. y  e.  d  ph  /\ 
 A. y  e.  d  E. x  e.  a  ph ) )
 
13.2.14  Real numbers
 
Axiomax-ddkcomp 15194 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then Axiom ax-ddkcomp 15194 should be used in place of construction specific results. In particular, axcaucvg 7928 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
 |-  (
 ( ( A  C_  RR  /\  E. x  x  e.  A )  /\  E. x  e.  RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e. 
 RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  y  <_  x  /\  (
 ( B  e.  R  /\  A. y  e.  A  y  <_  B )  ->  x  <_  B ) ) )
 
13.3  Mathbox for Jim Kingdon
 
13.3.1  Propositional and predicate logic
 
Theoremnnnotnotr 15195 Double negation of double negation elimination. Suggested by an online post by Martin Escardo. Although this statement resembles nnexmid 851, it can be proved with reference only to implication and negation (that is, without use of disjunction). (Contributed by Jim Kingdon, 21-Oct-2024.)
 |-  -.  -.  ( -.  -.  ph  -> 
 ph )
 
13.3.2  Natural numbers
 
Theorem1dom1el 15196 If a set is dominated by one, then any two of its elements are equal. (Contributed by Jim Kingdon, 23-Apr-2025.)
 |-  (
 ( A  ~<_  1o  /\  B  e.  A  /\  C  e.  A )  ->  B  =  C )
 
Theoremss1oel2o 15197 Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4216 which more directly illustrates the contrast with el2oss1o 6467. (Contributed by Jim Kingdon, 8-Aug-2022.)
 |-  (EXMID  <->  A. x ( x 
 C_  1o  ->  x  e. 
 2o ) )
 
Theoremnnti 15198 Ordering on a natural number generates a tight apartness. (Contributed by Jim Kingdon, 7-Aug-2022.)
 |-  ( ph  ->  A  e.  om )   =>    |-  ( ( ph  /\  ( u  e.  A  /\  v  e.  A )
 )  ->  ( u  =  v  <->  ( -.  u  _E  v  /\  -.  v  _E  u ) ) )
 
Theorem012of 15199 Mapping zero and one between  NN0 and  om style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
 
Theorem2o01f 15200 Mapping zero and one between  om and  NN0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
 |-  G  = frec ( ( x  e. 
 ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15286
  Copyright terms: Public domain < Previous  Next >