HomeHome Intuitionistic Logic Explorer
Theorem List (p. 152 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15101-15200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem1cxpd 15101 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 1  ^c  A )  =  1 )
 
Theoremrpcncxpcld 15102 Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  ^c  B )  e.  CC )
 
Theoremcxpltd 15103 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <  C  <->  ( A  ^c  B )  <  ( A  ^c  C ) ) )
 
Theoremcxpled 15104 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <_  C  <->  ( A  ^c  B )  <_  ( A  ^c  C ) ) )
 
Theoremrpcxpsqrtth 15105 Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11178. (Contributed by AV, 23-Dec-2022.)
 |-  ( A  e.  RR+  ->  ( ( sqr `  A )  ^c  2 )  =  A )
 
Theoremcxprecd 15106 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( 1  /  A )  ^c  B )  =  ( 1  /  ( A  ^c  B ) ) )
 
Theoremrpcxpcld 15107 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  ^c  B )  e.  RR+ )
 
Theoremlogcxpd 15108 Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( log `  ( A  ^c  B ) )  =  ( B  x.  ( log `  A )
 ) )
 
Theoremcxplt3d 15109 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  1
 )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <  C  <->  ( A  ^c  C )  <  ( A  ^c  B ) ) )
 
Theoremcxple3d 15110 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  1
 )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <_  C  <->  ( A  ^c  C )  <_  ( A  ^c  B ) ) )
 
Theoremcxpmuld 15111 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A 
 ^c  B ) 
 ^c  C ) )
 
Theoremcxpcom 15112 Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  ^c  B )  ^c  C )  =  (
 ( A  ^c  C )  ^c  B ) )
 
Theoremapcxp2 15113 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
 |-  ( ( ( A  e.  RR+  /\  A #  1
 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C  <->  ( A  ^c  B ) #  ( A 
 ^c  C ) ) )
 
Theoremrpabscxpbnd 15114 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  0  <  ( Re `  B ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <_  M )   =>    |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
 ( abs `  B )  x.  pi ) ) ) )
 
Theoremltexp2 15115 Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( M  <  N  <->  ( A ^ M )  <  ( A ^ N ) ) )
 
11.2.4  Logarithms to an arbitrary base

Define "log using an arbitrary base" function and then prove some of its properties. As with df-relog 15034 this is for real logarithms rather than complex logarithms.

Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log".

There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations):  ( B logb  X ) where  B is the base and 
X is the argument of the logarithm function. An alternative would be to support the notational form  ( ( logb  `  B
) `  X ); that looks a little more like traditional notation.

 
Syntaxclogb 15116 Extend class notation to include the logarithm generalized to an arbitrary base.
 class logb
 
Definitiondf-logb 15117* Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as  ( B logb  X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where  x is a positive real apart from one and where 
y is a positive real, so the choice of  ( CC  \  { 0 ,  1 } ) and  ( CC 
\  { 0 } ) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.)
 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y
 )  /  ( log `  x ) ) )
 
Theoremrplogbval 15118 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  (
 ( log `  X )  /  ( log `  B ) ) )
 
Theoremrplogbcl 15119 General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
 
Theoremrplogbid1 15120 General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.)
 |-  ( ( A  e.  RR+  /\  A #  1 )  ->  ( A logb  A )  =  1 )
 
Theoremrplogb1 15121 The logarithm of  1 to an arbitrary base  B is 0. Property 1(b) of [Cohen4] p. 361. See log1 15042. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
 |-  ( ( B  e.  RR+  /\  B #  1 )  ->  ( B logb  1 )  =  0 )
 
Theoremrpelogb 15122 The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using  _e as the base in logb is the same as  log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.)
 |-  ( A  e.  RR+  ->  ( _e logb  A )  =  ( log `  A ) )
 
Theoremrplogbchbase 15123 Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.)
 |-  ( ( ( A  e.  RR+  /\  A #  1
 )  /\  ( B  e.  RR+  /\  B #  1
 )  /\  X  e.  RR+ )  ->  ( A logb  X )  =  ( ( B logb  X )  /  ( B logb  A ) ) )
 
Theoremrelogbval 15124 Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  X  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B ) ) )
 
Theoremrelogbzcl 15125 Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  X  e.  RR+ )  ->  ( B logb  X )  e. 
 RR )
 
Theoremrplogbreexp 15126 Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  C  e.  RR+  /\  E  e.  RR )  ->  ( B logb  ( C  ^c  E ) )  =  ( E  x.  ( B logb  C ) ) )
 
Theoremrplogbzexp 15127 Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  C  e.  RR+  /\  N  e.  ZZ )  ->  ( B logb  ( C ^ N ) )  =  ( N  x.  ( B logb  C ) ) )
 
Theoremrprelogbmul 15128 The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B logb 
 ( A  x.  C ) )  =  (
 ( B logb  A )  +  ( B logb  C ) ) )
 
Theoremrprelogbmulexp 15129 The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  ( A  e.  RR+  /\  C  e.  RR+  /\  E  e.  RR )
 )  ->  ( B logb  ( A  x.  ( C  ^c  E ) ) )  =  ( ( B logb  A )  +  ( E  x.  ( B logb  C ) ) ) )
 
Theoremrprelogbdiv 15130 The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  ( A  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B logb 
 ( A  /  C ) )  =  (
 ( B logb  A )  -  ( B logb  C ) ) )
 
Theoremrelogbexpap 15131 Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  M  e.  ZZ )  ->  ( B logb 
 ( B ^ M ) )  =  M )
 
Theoremnnlogbexp 15132 Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  M  e.  ZZ )  ->  ( B logb  ( B ^ M ) )  =  M )
 
Theoremlogbrec 15133 Logarithm of a reciprocal changes sign. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  A  e.  RR+ )  ->  ( B logb  ( 1  /  A ) )  =  -u ( B logb  A ) )
 
Theoremlogbleb 15134 The general logarithm function is monotone/increasing. See logleb 15051. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <_  Y  <->  ( B logb  X ) 
 <_  ( B logb  Y ) ) )
 
Theoremlogblt 15135 The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15050. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
 |-  ( ( B  e.  ( ZZ>= `  2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( B logb  X )  <  ( B logb  Y ) ) )
 
Theoremrplogbcxp 15136 Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR )  ->  ( B logb 
 ( B  ^c  X ) )  =  X )
 
Theoremrpcxplogb 15137 Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
 |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
 
Theoremrelogbcxpbap 15138 The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.)
 |-  ( ( ( B  e.  RR+  /\  B #  1
 )  /\  X  e.  RR+  /\  Y  e.  RR )  ->  ( ( B logb  X )  =  Y  <->  ( B  ^c  Y )  =  X ) )
 
Theoremlogbgt0b 15139 The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( A  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  ->  ( 0  <  ( B logb  A )  <->  1  <  A ) )
 
Theoremlogbgcd1irr 15140 The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ). (Contributed by AV, 29-Dec-2022.)
 |-  ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X 
 gcd  B )  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
 
Theoremlogbgcd1irraplemexp 15141 Lemma for logbgcd1irrap 15143. Apartness of  X ^ N and  B ^ M. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( X ^ N ) #  ( B ^ M ) )
 
Theoremlogbgcd1irraplemap 15142 Lemma for logbgcd1irrap 15143. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
 |-  ( ph  ->  X  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  B  e.  ( ZZ>= `  2 )
 )   &    |-  ( ph  ->  ( X  gcd  B )  =  1 )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( B logb  X ) #  ( M  /  N ) )
 
Theoremlogbgcd1irrap 15143 The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example,  ( 2 logb  9 ) #  Q where  Q is rational. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( ( X  e.  ( ZZ>= `  2
 )  /\  B  e.  ( ZZ>= `  2 )
 )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  ( B logb  X ) #  Q )
 
Theorem2logb9irr 15144 Example for logbgcd1irr 15140. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15150 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.)
 |-  ( 2 logb  9 )  e.  ( RR  \  QQ )
 
Theoremlogbprmirr 15145 The logarithm of a prime to a different prime base is not rational. For example,  ( 2 logb  3 )  e.  ( RR  \  QQ ) (see 2logb3irr 15146). (Contributed by AV, 31-Dec-2022.)
 |-  ( ( X  e.  Prime  /\  B  e.  Prime  /\  X  =/=  B ) 
 ->  ( B logb  X )  e.  ( RR  \  QQ ) )
 
Theorem2logb3irr 15146 Example for logbprmirr 15145. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.)
 |-  ( 2 logb  3 )  e.  ( RR  \  QQ )
 
Theorem2logb9irrALT 15147 Alternate proof of 2logb9irr 15144: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( 2 logb  9 )  e.  ( RR  \  QQ )
 
Theoremsqrt2cxp2logb9e3 15148 The square root of two to the power of the logarithm of nine to base two is three.  ( sqr `  2
) and  ( 2 logb  9 ) are not rational (see sqrt2irr0 12305 resp. 2logb9irr 15144), satisfying the statement in 2irrexpq 15149. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( sqr `  2
 )  ^c  ( 2 logb  9 ) )  =  3
 
Theorem2irrexpq 15149* There exist real numbers  a and  b which are not rational such that  ( a ^
b ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named non-rational numbers  ( sqr `  2 ) and  ( 2 logb  9 ), see sqrt2irr0 12305, 2logb9irr 15144 and sqrt2cxp2logb9e3 15148. Therefore, this proof is acceptable/usable in intuitionistic logic.

For a theorem which is the same but proves that  a and  b are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15151. (Contributed by AV, 23-Dec-2022.)

 |- 
 E. a  e.  ( RR  \  QQ ) E. b  e.  ( RR  \  QQ ) ( a 
 ^c  b )  e.  QQ
 
Theorem2logb9irrap 15150 Example for logbgcd1irrap 15143. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
 |-  ( Q  e.  QQ  ->  ( 2 logb  9 ) #  Q )
 
Theorem2irrexpqap 15151* There exist real numbers  a and  b which are irrational (in the sense of being apart from any rational number) such that  ( a ^ b ) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers  ( sqr `  2 ) and  ( 2 logb  9 ), see sqrt2irrap 12321, 2logb9irrap 15150 and sqrt2cxp2logb9e3 15148. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
 |- 
 E. a  e.  RR  E. b  e.  RR  ( A. p  e.  QQ  a #  p  /\  A. q  e.  QQ  b #  q  /\  ( a  ^c  b )  e.  QQ )
 
11.2.5  Quartic binomial expansion
 
Theorembinom4 15152 Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11630, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^
 4 )  =  ( ( ( A ^
 4 )  +  (
 4  x.  ( ( A ^ 3 )  x.  B ) ) )  +  ( ( 6  x.  ( ( A ^ 2 )  x.  ( B ^
 2 ) ) )  +  ( ( 4  x.  ( A  x.  ( B ^ 3 ) ) )  +  ( B ^ 4 ) ) ) ) )
 
11.3  Basic number theory
 
11.3.1  Wilson's theorem
 
Theoremwilthlem1 15153 The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in  ZZ 
/  P ZZ are  1 and  -u 1  ==  P  -  1. (Note that from prmdiveq 12377,  ( N ^ ( P  - 
2 ) )  mod 
P is the modular inverse of  N in  ZZ  /  P ZZ. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  N  e.  (
 1 ... ( P  -  1 ) ) ) 
 ->  ( N  =  ( ( N ^ ( P  -  2 ) ) 
 mod  P )  <->  ( N  =  1  \/  N  =  ( P  -  1 ) ) ) )
 
11.3.2  Quadratic residues and the Legendre symbol

If the congruence  ( ( x ^ 2 )  mod  p )  =  ( n  mod  p ) has a solution we say that  n is a quadratic residue  mod  p. If the congruence has no solution we say that  n is a quadratic nonresidue 
mod  p, see definition in [ApostolNT] p. 178. The Legendre symbol  ( n  /L
p ) is defined in a way that its value is 
1 if  n is a quadratic residue  mod  p and  -u 1 if  n is a quadratic nonresidue  mod  p (and  0 if  p divides  n).

Originally, the Legendre symbol  ( N  /L
P ) was defined for odd primes  P only (and arbitrary integers  N) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 15155 for the "Legendre symbol"  /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for  /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol".

 
Syntaxclgs 15154 Extend class notation with the Legendre symbol function.
 class  /L
 
Definitiondf-lgs 15155* Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 /L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  < 
 0  /\  a  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2 
 ||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
 ( m  -  1
 )  /  2 )
 )  +  1 ) 
 mod  m )  -  1 ) ) ^
 ( m  pCnt  n ) ) ,  1 ) ) ) `  ( abs `  n )
 ) ) ) )
 
Theoremzabsle1 15156  { -u 1 ,  0 ,  1 } is the set of all integers with absolute value at most  1. (Contributed by AV, 13-Jul-2021.)
 |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z )  <_  1 ) )
 
Theoremlgslem1 15157 When  a is coprime to the prime  p,  a ^
( ( p  - 
1 )  /  2
) is equivalent  mod  p to  1 or  -u 1, and so adding  1 makes it equivalent to  0 or  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
 ( ( A ^
 ( ( P  -  1 )  /  2
 ) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
 
Theoremlgslem2 15158 The set  Z of all integers with absolute value at most 
1 contains  { -u 1 ,  0 ,  1 }. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( -u 1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
 
Theoremlgslem3 15159* The set  Z of all integers with absolute value at most 
1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  Z  /\  B  e.  Z )  ->  ( A  x.  B )  e.  Z )
 
Theoremlgslem4 15160* Lemma for lgsfcl2 15163. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  (
 ( ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  +  1 )  mod  P )  -  1 )  e.  Z )
 
Theoremlgsval 15161* Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
  ( abs `  N ) ) ) ) )
 
Theoremlgsfvalg 15162* Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( M  -  1
 )  /  2 )
 )  +  1 ) 
 mod  M )  -  1
 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
 
Theoremlgsfcl2 15163* The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 15156). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> Z )
 
Theoremlgscllem 15164* The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgsfcl 15165* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsfle1 15166* The function  F has magnitude less or equal to  1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  M  e.  NN )  ->  ( abs `  ( F `  M ) )  <_  1 )
 
Theoremlgsval2lem 15167* Lemma for lgsval2 15173. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  Prime ) 
 ->  ( A  /L N )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( N  -  1 )  / 
 2 ) )  +  1 )  mod  N )  -  1 ) ) )
 
Theoremlgsval4lem 15168* Lemma for lgsval4 15177. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) ) )
 
Theoremlgscl2 15169* The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgs0 15170 The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 0 )  =  if ( ( A ^
 2 )  =  1 ,  1 ,  0 ) )
 
Theoremlgscl 15171 The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
 
Theoremlgsle1 15172 The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 15171 this implies that it takes values in  { -u 1 ,  0 ,  1 }. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  <_  1 )
 
Theoremlgsval2 15173 The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime  2). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( A  /L P )  =  if ( P  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  +  1 )  mod  P )  -  1 ) ) )
 
Theoremlgs2 15174 The Legendre symbol at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 2 )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) )
 
Theoremlgsval3 15175 The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ (
 ( P  -  1
 )  /  2 )
 )  +  1 ) 
 mod  P )  -  1
 ) )
 
Theoremlgsvalmod 15176 The Legendre symbol is equivalent to 
a ^ ( ( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  (
 ( A  /L P )  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  mod  P ) )
 
Theoremlgsval4 15177* Restate lgsval 15161 for nonzero  N, where the function  F has been abbreviated into a self-referential expression taking the value of  /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L N )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
  ( abs `  N ) ) ) )
 
Theoremlgsfcl3 15178* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsval4a 15179* Same as lgsval4 15177 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L N )  =  ( 
 seq 1 (  x. 
 ,  F ) `  N ) )
 
Theoremlgscl1 15180 The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  { -u 1 ,  0 ,  1 } )
 
Theoremlgsneg 15181 The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L -u N )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A 
 /L N ) ) )
 
Theoremlgsneg1 15182 The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  NN0  /\  N  e.  ZZ )  ->  ( A  /L -u N )  =  ( A  /L N ) )
 
Theoremlgsmod 15183 The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( ( A 
 mod  N )  /L N )  =  ( A  /L N ) )
 
Theoremlgsdilem 15184 Lemma for lgsdi 15194 and lgsdir 15192: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  if ( ( N  <  0 
 /\  ( A  x.  B )  <  0 ) ,  -u 1 ,  1 )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x. 
 if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
 
Theoremlgsdir2lem1 15185 Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( 1 
 mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  (
 ( 3  mod  8
 )  =  3  /\  ( -u 3  mod  8
 )  =  5 ) )
 
Theoremlgsdir2lem2 15186 Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ...
 K )  ->  ( A  mod  8 )  e.  S ) ) )   &    |-  M  =  ( K  +  1 )   &    |-  N  =  ( M  +  1 )   &    |-  N  e.  S   =>    |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  (
 0 ... N )  ->  ( A  mod  8 )  e.  S ) ) )
 
Theoremlgsdir2lem3 15187 Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A 
 mod  8 )  e.  ( { 1 ,  7 }  u.  {
 3 ,  5 } ) )
 
Theoremlgsdir2lem4 15188 Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e. 
 { 1 ,  7 } )  ->  (
 ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  { 1 ,  7 } )
 )
 
Theoremlgsdir2lem5 15189 Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
 ( A  mod  8
 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e.  { 3 ,  5 } ) ) 
 ->  ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 } )
 
Theoremlgsdir2 15190 The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L
 2 ) ) )
 
Theoremlgsdirprm 15191 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
 
Theoremlgsdir 15192 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
 
Theoremlgsdilem2 15193* Lemma for lgsdi 15194. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  =/=  0 )   &    |-  ( ph  ->  N  =/=  0 )   &    |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
 ( n  pCnt  M ) ) ,  1 ) )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  M ) )  =  (  seq 1
 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
 
Theoremlgsdi 15194 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
 
Theoremlgsne0 15195 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A 
 /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgsabs1 15196 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgssq 15197 The Legendre symbol at a square is equal to  1. Together with lgsmod 15183 this implies that the Legendre symbol takes value  1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A 
 gcd  N )  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
 
Theoremlgssq2 15198 The Legendre symbol at a square is equal to  1. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  ( A  gcd  N )  =  1 )  ->  ( A  /L
 ( N ^ 2
 ) )  =  1 )
 
Theoremlgsprme0 15199 The Legendre symbol at any prime (even at 2) is  0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( ( A  /L P )  =  0  <-> 
 ( A  mod  P )  =  0 )
 )
 
Theorem1lgs 15200 The Legendre symbol at  1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( N  e.  ZZ  ->  ( 1  /L N )  =  1
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >