HomeHome Intuitionistic Logic Explorer
Theorem List (p. 152 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15101-15200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrecnprss 15101 Both  RR and  CC are subsets of  CC. (Contributed by Mario Carneiro, 10-Feb-2015.)
 |-  ( S  e.  { RR ,  CC }  ->  S 
 C_  CC )
 
Theoremdvfgg 15102 Explicitly write out the functionality condition on derivative for  S  =  RR and 
CC. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
 |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC 
 ^pm  S ) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
 
Theoremdvfpm 15103 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR 
 _D  F ) --> CC )
 
Theoremdvfcnpm 15104 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
 |-  ( F  e.  ( CC  ^pm  CC )  ->  ( CC  _D  F ) : dom  ( CC 
 _D  F ) --> CC )
 
Theoremdvidlemap 15105* Lemma for dvid 15109 and dvconst 15108. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( ph  ->  F : CC --> CC )   &    |-  (
 ( ph  /\  ( x  e.  CC  /\  z  e.  CC  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( CC  _D  F )  =  ( CC  X.  { B }
 ) )
 
Theoremdvidrelem 15106* Lemma for dvidre 15111 and dvconstre 15110. Analogue of dvidlemap 15105 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  F : RR --> CC )   &    |-  (
 ( ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  ( ( ( F `  z
 )  -  ( F `
  x ) ) 
 /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( RR  _D  F )  =  ( RR  X.  { B }
 ) )
 
Theoremdvidsslem 15107* Lemma for dvconstss 15112. Analogue of dvidlemap 15105 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ( ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  ->  ( ( ( F `
  z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )   &    |-  B  e.  CC   =>    |-  ( ph  ->  ( S  _D  F )  =  ( X  X.  { B } ) )
 
Theoremdvconst 15108 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A }
 ) )  =  ( CC  X.  { 0 } ) )
 
Theoremdvid 15109 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
 |-  ( CC  _D  (  _I  |`  CC ) )  =  ( CC  X.  { 1 } )
 
Theoremdvconstre 15110 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( A  e.  CC  ->  ( RR  _D  ( RR  X.  { A }
 ) )  =  ( RR  X.  { 0 } ) )
 
Theoremdvidre 15111 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
 |-  ( RR  _D  (  _I  |`  RR ) )  =  ( RR  X.  { 1 } )
 
Theoremdvconstss 15112 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  J  =  ( Kt  S )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( X  X.  { A } ) )  =  ( X  X.  { 0 } ) )
 
Theoremdvcnp2cntop 15113 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  J  =  ( Kt  A )   &    |-  K  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  B  e.  dom  ( S  _D  F ) )  ->  F  e.  ( ( J  CnP  K ) `  B ) )
 
Theoremdvcn 15114 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  ( ( ( S 
 C_  CC  /\  F : A
 --> CC  /\  A  C_  S )  /\  dom  ( S  _D  F )  =  A )  ->  F  e.  ( A -cn-> CC )
 )
 
Theoremdvaddxxbr 15115 The sum rule for derivatives at a point. That is, if the derivative of  F at  C is  K and the derivative of  G at  C is  L, then the derivative of the pointwise sum of those two functions at  C is  K  +  L. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  +  G ) ) ( K  +  L ) )
 
Theoremdvmulxxbr 15116 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15118. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  C ( S  _D  F ) K )   &    |-  ( ph  ->  C ( S  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( S  _D  ( F  oF  x.  G ) ) ( ( K  x.  ( G `
  C ) )  +  ( L  x.  ( F `  C ) ) ) )
 
Theoremdvaddxx 15117 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15115. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  +  G ) ) `  C )  =  ( (
 ( S  _D  F ) `  C )  +  ( ( S  _D  G ) `  C ) ) )
 
Theoremdvmulxx 15118 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15116. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  F ) )   &    |-  ( ph  ->  C  e.  dom  ( S  _D  G ) )   =>    |-  ( ph  ->  ( ( S  _D  ( F  oF  x.  G ) ) `  C )  =  ( (
 ( ( S  _D  F ) `  C )  x.  ( G `  C ) )  +  ( ( ( S  _D  G ) `  C )  x.  ( F `  C ) ) ) )
 
Theoremdviaddf 15119 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  +  G )
 )  =  ( ( S  _D  F )  oF  +  ( S  _D  G ) ) )
 
Theoremdvimulf 15120 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  G : X --> CC )   &    |-  ( ph  ->  dom  ( S  _D  F )  =  X )   &    |-  ( ph  ->  dom  ( S  _D  G )  =  X )   =>    |-  ( ph  ->  ( S  _D  ( F  oF  x.  G )
 )  =  ( ( ( S  _D  F )  oF  x.  G )  oF  +  (
 ( S  _D  G )  oF  x.  F ) ) )
 
Theoremdvcoapbr 15121* The chain rule for derivatives at a point. The  u #  C  -> 
( G `  u
) #  ( G `  C ) hypothesis constrains what functions work for  G. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  G : Y --> X )   &    |-  ( ph  ->  Y  C_  T )   &    |-  ( ph  ->  A. u  e.  Y  ( u #  C  ->  ( G `  u ) #  ( G `  C ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  T  C_ 
 CC )   &    |-  ( ph  ->  ( G `  C ) ( S  _D  F ) K )   &    |-  ( ph  ->  C ( T  _D  G ) L )   &    |-  J  =  (
 MetOpen `  ( abs  o.  -  ) )   =>    |-  ( ph  ->  C ( T  _D  ( F  o.  G ) ) ( K  x.  L ) )
 
Theoremdvcjbr 15122 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15123. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  X  C_  RR )   &    |-  ( ph  ->  C  e.  dom  ( RR  _D  F ) )   =>    |-  ( ph  ->  C ( RR  _D  ( *  o.  F ) ) ( * `  (
 ( RR  _D  F ) `  C ) ) )
 
Theoremdvcj 15123 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 15122. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( ( F : X
 --> CC  /\  X  C_  RR )  ->  ( RR 
 _D  ( *  o.  F ) )  =  ( *  o.  ( RR  _D  F ) ) )
 
Theoremdvfre 15124 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
 |-  ( ( F : A
 --> RR  /\  A  C_  RR )  ->  ( RR 
 _D  F ) : dom  ( RR  _D  F ) --> RR )
 
Theoremdvexp 15125* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) )
 
Theoremdvexp2 15126* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
 |-  ( N  e.  NN0  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 , 
 0 ,  ( N  x.  ( x ^
 ( N  -  1
 ) ) ) ) ) )
 
Theoremdvrecap 15127* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  { w  e.  CC  |  w #  0 }  |->  ( A  /  x ) ) )  =  ( x  e. 
 { w  e.  CC  |  w #  0 }  |->  -u ( A  /  ( x ^ 2 ) ) ) )
 
Theoremdvmptidcn 15128 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 )
 
Theoremdvmptccn 15129* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  A ) )  =  ( x  e. 
 CC  |->  0 ) )
 
Theoremdvmptid 15130* Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  S  |->  x ) )  =  ( x  e.  S  |->  1 ) )
 
Theoremdvmptc 15131* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  S  |->  A ) )  =  ( x  e.  S  |->  0 ) )
 
Theoremdvmptclx 15132* Closure lemma for dvmptmulx 15134 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   =>    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  CC )
 
Theoremdvmptaddx 15133* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  +  C ) ) )  =  ( x  e.  X  |->  ( B  +  D ) ) )
 
Theoremdvmptmulx 15134* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  x  e.  X )  ->  B  e.  V )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X 
 C_  S )   &    |-  (
 ( ph  /\  x  e.  X )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  D  e.  W )   &    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  C ) )  =  ( x  e.  X  |->  D ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  ( A  x.  C ) ) )  =  ( x  e.  X  |->  ( ( B  x.  C )  +  ( D  x.  A ) ) ) )
 
Theoremdvmptcmulcn 15135* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( CC  _D  ( x  e. 
 CC  |->  ( C  x.  A ) ) )  =  ( x  e. 
 CC  |->  ( C  x.  B ) ) )
 
Theoremdvmptnegcn 15136* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  -u A ) )  =  ( x  e.  CC  |->  -u B ) )
 
Theoremdvmptsubcn 15137* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
 |-  ( ( ph  /\  x  e.  CC )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  B  e.  V )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  A ) )  =  ( x  e.  CC  |->  B ) )   &    |-  (
 ( ph  /\  x  e. 
 CC )  ->  C  e.  CC )   &    |-  ( ( ph  /\  x  e.  CC )  ->  D  e.  W )   &    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  C ) )  =  ( x  e.  CC  |->  D ) )   =>    |-  ( ph  ->  ( CC  _D  ( x  e.  CC  |->  ( A  -  C ) ) )  =  ( x  e.  CC  |->  ( B  -  D ) ) )
 
Theoremdvmptcjx 15138* Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
 |-  ( ( ph  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  x  e.  X ) 
 ->  B  e.  V )   &    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   &    |-  ( ph  ->  X  C_  RR )   =>    |-  ( ph  ->  ( RR  _D  ( x  e.  X  |->  ( * `  A ) ) )  =  ( x  e.  X  |->  ( * `  B ) ) )
 
Theoremdvmptfsum 15139* Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
 |-  J  =  ( Kt  S )   &    |-  K  =  (
 TopOpen ` fld )   &    |-  ( ph  ->  S  e.  { RR ,  CC } )   &    |-  ( ph  ->  X  e.  J )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  A  e.  CC )   &    |-  ( ( ph  /\  i  e.  I  /\  x  e.  X )  ->  B  e.  CC )   &    |-  (
 ( ph  /\  i  e.  I )  ->  ( S  _D  ( x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )   =>    |-  ( ph  ->  ( S  _D  ( x  e.  X  |->  sum_
 i  e.  I  A ) )  =  ( x  e.  X  |->  sum_ i  e.  I  B )
 )
 
Theoremdveflem 15140 Derivative of the exponential function at 0. The key step in the proof is eftlub 11943, to show that  abs ( exp ( x )  - 
1  -  x )  <_  abs ( x ) ^ 2  x.  (
3  /  4 ). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
 |-  0 ( CC  _D  exp ) 1
 
Theoremdvef 15141 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
 |-  ( CC  _D  exp )  =  exp
 
PART 11  BASIC REAL AND COMPLEX FUNCTIONS
 
11.1  Polynomials
 
11.1.1  Elementary properties of complex polynomials
 
Syntaxcply 15142 Extend class notation to include the set of complex polynomials.
 class Poly
 
Syntaxcidp 15143 Extend class notation to include the identity polynomial.
 class  Xp
 
Definitiondf-ply 15144* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |- Poly  =  ( x  e.  ~P CC  |->  { f  |  E. n  e.  NN0  E. a  e.  ( ( x  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) } )
 
Definitiondf-idp 15145 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  Xp  =  (  _I  |`  CC )
 
Theoremplyval 15146* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( S  C_  CC  ->  (Poly `  S )  =  { f  |  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) } )
 
Theoremplybss 15147 Reverse closure of the parameter  S of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  ->  S  C_ 
 CC )
 
Theoremelply 15148* Definition of a polynomial with coefficients in  S. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  <->  ( S  C_  CC  /\  E. n  e. 
 NN0  E. a  e.  (
 ( S  u.  {
 0 } )  ^m  NN0 ) F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( z ^
 k ) ) ) ) )
 
Theoremelply2 15149* The coefficient function can be assumed to have zeroes outside  0 ... n. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( F  e.  (Poly `  S )  <->  ( S  C_  CC  /\  E. n  e. 
 NN0  E. a  e.  (
 ( S  u.  {
 0 } )  ^m  NN0 ) ( ( a
 " ( ZZ>= `  ( n  +  1 )
 ) )  =  {
 0 }  /\  F  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... n ) ( ( a `  k
 )  x.  ( z ^ k ) ) ) ) ) )
 
Theoremplyun0 15150 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  (Poly `  ( S  u.  { 0 } )
 )  =  (Poly `  S )
 
Theoremplyf 15151 A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  ( F  e.  (Poly `  S )  ->  F : CC --> CC )
 
Theoremplyss 15152 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  T  /\  T  C_  CC )  ->  (Poly `  S )  C_  (Poly `  T ) )
 
Theoremplyssc 15153 Every polynomial ring is contained in the ring of polynomials over  CC. (Contributed by Mario Carneiro, 22-Jul-2014.)
 |-  (Poly `  S )  C_  (Poly `  CC )
 
Theoremelplyr 15154* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( ( S  C_  CC  /\  N  e.  NN0  /\  A : NN0 --> S ) 
 ->  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( A `  k
 )  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
 
Theoremelplyd 15155* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( 0
 ... N ) ) 
 ->  A  e.  S )   =>    |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  (
 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
 
Theoremply1termlem 15156* Lemma for ply1term 15157. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^
 k ) ) ) )
 
Theoremply1term 15157* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  F  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) )   =>    |-  ( ( S  C_  CC  /\  A  e.  S  /\  N  e.  NN0 )  ->  F  e.  (Poly `  S ) )
 
Theoremplypow 15158* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  1  e.  S  /\  N  e.  NN0 )  ->  ( z  e.  CC  |->  ( z ^ N ) )  e.  (Poly `  S ) )
 
Theoremplyconst 15159 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  A  e.  S )  ->  ( CC  X.  { A } )  e.  (Poly `  S )
 )
 
Theoremplyid 15160 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( S  C_  CC  /\  1  e.  S )  ->  Xp  e.  (Poly `  S )
 )
 
Theoremplyaddlem1 15161* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  B : NN0 --> CC )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  +  G )  =  ( z  e.  CC  |->  sum_ k  e.  (
 0 ... if ( M 
 <_  N ,  N ,  M ) ) ( ( ( A  oF  +  B ) `  k )  x.  (
 z ^ k ) ) ) )
 
Theoremplymullem1 15162* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  B : NN0 --> CC )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_ n  e.  (
 0 ... ( M  +  N ) ) (
 sum_ k  e.  (
 0 ... n ) ( ( A `  k
 )  x.  ( B `
  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
 
Theoremplyaddlem 15163* Lemma for plyadd 15165. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )
 )   &    |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   =>    |-  ( ph  ->  ( F  oF  +  G )  e.  (Poly `  S ) )
 
Theoremplymullem 15164* Lemma for plymul 15166. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )
 )   &    |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( M  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  ( B "
 ( ZZ>= `  ( N  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... M ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... N ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S ) )
 
Theoremplyadd 15165* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  +  G )  e.  (Poly `  S ) )
 
Theoremplymul 15166* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S ) )
 
Theoremplysub 15167* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  -u 1  e.  S )   =>    |-  ( ph  ->  ( F  oF  -  G )  e.  (Poly `  S ) )
 
Theoremplyaddcl 15168 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  +  G )  e.  (Poly `  CC ) )
 
Theoremplymulcl 15169 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  x.  G )  e.  (Poly `  CC ) )
 
Theoremplysubcl 15170 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S ) )  ->  ( F  oF  -  G )  e.  (Poly `  CC ) )
 
Theoremplycoeid3 15171* Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
 |-  ( ph  ->  D  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  ( ph  ->  ( A "
 ( ZZ>= `  ( D  +  1 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... D ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  D ) )   &    |-  ( ph  ->  X  e.  CC )   =>    |-  ( ph  ->  ( F `  X )  =  sum_ j  e.  (
 0 ... M ) ( ( A `  j
 )  x.  ( X ^ j ) ) )
 
Theoremplycolemc 15172* Lemma for plyco 15173. The result expressed as a sum, with a degree and coefficients for  F specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  ( A " ( ZZ>= `  ( N  +  1
 ) ) )  =  { 0 } )   &    |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( x ^
 k ) ) ) )   =>    |-  ( ph  ->  (
 z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( ( G `
  z ) ^
 k ) ) )  e.  (Poly `  S ) )
 
Theoremplyco 15173* The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  ( ph  ->  F  e.  (Poly `  S )
 )   &    |-  ( ph  ->  G  e.  (Poly `  S )
 )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  +  y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  x.  y )  e.  S )   =>    |-  ( ph  ->  ( F  o.  G )  e.  (Poly `  S )
 )
 
Theoremplycjlemc 15174* Lemma for plycj 15175. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
 |-  ( ph  ->  N  e.  NN0 )   &    |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )   &    |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ...
 N ) ( ( A `  k )  x.  ( z ^
 k ) ) ) )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( ( *  o.  A ) `  k
 )  x.  ( z ^ k ) ) ) )
 
Theoremplycj 15175* The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  G  =  ( ( *  o.  F )  o.  * )   &    |-  (
 ( ph  /\  x  e.  S )  ->  ( * `  x )  e.  S )   &    |-  ( ph  ->  F  e.  (Poly `  S ) )   =>    |-  ( ph  ->  G  e.  (Poly `  S )
 )
 
Theoremplycn 15176 A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8047. (Revised by GG, 16-Mar-2025.)
 |-  ( F  e.  (Poly `  S )  ->  F  e.  ( CC -cn-> CC )
 )
 
Theoremplyrecj 15177 A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( * `  ( F `  A ) )  =  ( F `  ( * `  A ) ) )
 
Theoremplyreres 15178 Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
 |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
 
Theoremdvply1 15179* Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
 |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_
 k  e.  ( 0
 ... N ) ( ( A `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  G  =  ( z  e. 
 CC  |->  sum_ k  e.  (
 0 ... ( N  -  1 ) ) ( ( B `  k
 )  x.  ( z ^ k ) ) ) )   &    |-  ( ph  ->  A : NN0 --> CC )   &    |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( CC  _D  F )  =  G )
 
Theoremdvply2g 15180 The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
 |-  ( ( S  e.  (SubRing ` fld )  /\  F  e.  (Poly `  S ) ) 
 ->  ( CC  _D  F )  e.  (Poly `  S ) )
 
Theoremdvply2 15181 The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
 |-  ( F  e.  (Poly `  S )  ->  ( CC  _D  F )  e.  (Poly `  CC )
 )
 
11.2  Basic trigonometry
 
11.2.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 15182 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
 |- 
 exp  e.  ( CC -cn-> CC )
 
Theoremsincn 15183 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 sin  e.  ( CC -cn-> CC )
 
Theoremcoscn 15184 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
 |- 
 cos  e.  ( CC -cn-> CC )
 
Theoremreeff1olem 15185* Lemma for reeff1o 15187. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( ( U  e.  RR  /\  1  <  U )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
Theoremreeff1oleme 15186* Lemma for reeff1o 15187. (Contributed by Jim Kingdon, 15-May-2024.)
 |-  ( U  e.  (
 0 (,) _e )  ->  E. x  e.  RR  ( exp `  x )  =  U )
 
Theoremreeff1o 15187 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( exp  |`  RR ) : RR
 -1-1-onto-> RR+
 
Theoremefltlemlt 15188 Lemma for eflt 15189. The converse of efltim 11951 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( exp `  A )  <  ( exp `  B ) )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( ( abs `  ( A  -  B ) )  <  D  ->  ( abs `  ( ( exp `  A )  -  ( exp `  B ) ) )  <  ( ( exp `  B )  -  ( exp `  A ) ) ) )   =>    |-  ( ph  ->  A  <  B )
 
Theoremeflt 15189 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( exp `  A )  <  ( exp `  B ) ) )
 
Theoremefle 15190 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> 
 ( exp `  A )  <_  ( exp `  B ) ) )
 
Theoremreefiso 15191 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
 |-  ( exp  |`  RR )  Isom  <  ,  <  ( RR ,  RR+ )
 
Theoremreapef 15192 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( exp `  A ) #  ( exp `  B )
 ) )
 
11.2.2  Properties of pi = 3.14159...
 
Theorempilem1 15193 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
 |-  ( A  e.  ( RR+ 
 i^i  ( `' sin " { 0 } )
 ) 
 <->  ( A  e.  RR+  /\  ( sin `  A )  =  0 )
 )
 
Theoremcosz12 15194 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( cos `  p )  =  0
 
Theoremsin0pilem1 15195* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. p  e.  (
 1 (,) 2 ) ( ( cos `  p )  =  0  /\  A. x  e.  ( p (,) ( 2  x.  p ) ) 0  <  ( sin `  x ) )
 
Theoremsin0pilem2 15196* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
 |- 
 E. q  e.  (
 2 (,) 4 ) ( ( sin `  q
 )  =  0  /\  A. x  e.  ( 0 (,) q ) 0  <  ( sin `  x ) )
 
Theorempilem3 15197 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
 |-  ( pi  e.  (
 2 (,) 4 )  /\  ( sin `  pi )  =  0 )
 
Theorempigt2lt4 15198  pi is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( 2  <  pi  /\  pi  <  4 )
 
Theoremsinpi 15199 The sine of  pi is 0. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  ( sin `  pi )  =  0
 
Theorempire 15200  pi is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
 |-  pi  e.  RR
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >