HomeHome Intuitionistic Logic Explorer
Theorem List (p. 152 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15101-15200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremblbas 15101 The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
 |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  e.  TopBases )
 
Theoremblres 15102 A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
 |-  C  =  ( D  |`  ( Y  X.  Y ) )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P ( ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
 
Theoremxmeterval 15103 Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |- 
 .~  =  ( `' D " RR )   =>    |-  ( D  e.  ( *Met `  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( A D B )  e.  RR )
 ) )
 
Theoremxmeter 15104 The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |- 
 .~  =  ( `' D " RR )   =>    |-  ( D  e.  ( *Met `  X )  ->  .~  Er  X )
 
Theoremxmetec 15105 The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |- 
 .~  =  ( `' D " RR )   =>    |-  (
 ( D  e.  ( *Met `  X )  /\  P  e.  X ) 
 ->  [ P ]  .~  =  ( P ( ball `  D ) +oo )
 )
 
Theoremblssec 15106 A ball centered at  P is contained in the set of points finitely separated from  P. This is just an application of ssbl 15094 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |- 
 .~  =  ( `' D " RR )   =>    |-  (
 ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S )  C_  [ P ]  .~  )
 
Theoremblpnfctr 15107 The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  ( P ( ball `  D ) +oo ) )  ->  ( P ( ball `  D ) +oo )  =  ( A ( ball `  D ) +oo ) )
 
Theoremxmetresbl 15108 An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 15105, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  B  =  ( P ( ball `  D ) R )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( D  |`  ( B  X.  B ) )  e.  ( Met `  B ) )
 
9.2.4  Open sets of a metric space
 
Theoremmopnrel 15109 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
 |- 
 Rel  MetOpen
 
Theoremmopnval 15110 An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object  ( MetOpen `  D
) is the family of all open sets in the metric space determined by the metric  D. By mopntop 15112, the open sets of a metric space form a topology 
J, whose base set is 
U. J by mopnuni 15113. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  J  =  ( topGen `  ran  ( ball `  D )
 ) )
 
Theoremmopntopon 15111 The set of open sets of a metric space  X is a topology on  X. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X ) )
 
Theoremmopntop 15112 The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
 
Theoremmopnuni 15113 The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
 
Theoremelmopn 15114* The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  ran  ( ball `  D ) ( x  e.  y  /\  y  C_  A ) ) ) )
 
Theoremmopnfss 15115 The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  J  C_  ~P X )
 
Theoremmopnm 15116 The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  X  e.  J )
 
Theoremelmopn2 15117* A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x ( ball `  D )
 y )  C_  A ) ) )
 
Theoremmopnss 15118 An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J )  ->  A  C_  X )
 
Theoremisxms 15119 Express the predicate "
<. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  *MetSp  <-> 
 ( K  e.  TopSp  /\  J  =  ( MetOpen `  D ) ) )
 
Theoremisxms2 15120 Express the predicate "
<. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  *MetSp  <-> 
 ( D  e.  ( *Met `  X )  /\  J  =  ( MetOpen `  D ) ) )
 
Theoremisms 15121 Express the predicate "
<. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  MetSp  <->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )
 
Theoremisms2 15122 Express the predicate "
<. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  MetSp  <->  ( D  e.  ( Met `  X )  /\  J  =  ( MetOpen `  D )
 ) )
 
Theoremxmstopn 15123 The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  *MetSp  ->  J  =  (
 MetOpen `  D ) )
 
Theoremmstopn 15124 The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( TopOpen `  K )   &    |-  X  =  (
 Base `  K )   &    |-  D  =  ( ( dist `  K )  |`  ( X  X.  X ) )   =>    |-  ( K  e.  MetSp  ->  J  =  ( MetOpen `  D ) )
 
Theoremxmstps 15125 An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  *MetSp  ->  M  e.  TopSp )
 
Theoremmsxms 15126 A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  MetSp  ->  M  e.  *MetSp )
 
Theoremmstps 15127 A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( M  e.  MetSp  ->  M  e.  TopSp )
 
Theoremxmsxmet 15128 The distance function, suitably truncated, is an extended metric on  X. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  *MetSp  ->  D  e.  ( *Met `  X )
 )
 
Theoremmsmet 15129 The distance function, suitably truncated, is a metric on  X. (Contributed by Mario Carneiro, 12-Nov-2013.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  MetSp  ->  D  e.  ( Met `  X ) )
 
Theoremmsf 15130 The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  X  =  ( Base `  M )   &    |-  D  =  ( ( dist `  M )  |`  ( X  X.  X ) )   =>    |-  ( M  e.  MetSp  ->  D : ( X  X.  X ) --> RR )
 
Theoremxmsxmet2 15131 The distance function, suitably truncated, is an extended metric on  X. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( M  e.  *MetSp  ->  ( D  |`  ( X  X.  X ) )  e.  ( *Met `  X ) )
 
Theoremmsmet2 15132 The distance function, suitably truncated, is a metric on  X. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( M  e.  MetSp  ->  ( D  |`  ( X  X.  X ) )  e.  ( Met `  X ) )
 
Theoremmscl 15133 Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
 
Theoremxmscl 15134 Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theoremxmsge0 15135 The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theoremxmseq0 15136 The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( ( A D B )  =  0  <->  A  =  B ) )
 
Theoremxmssym 15137 The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theoremxmstri2 15138 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theoremmstri2 15139 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  ->  ( A D B )  <_  ( ( C D A )  +  ( C D B ) ) )
 
Theoremxmstri 15140 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theoremmstri 15141 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  ( ( A D C )  +  ( C D B ) ) )
 
Theoremxmstri3 15142 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  *MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( B D C ) ) )
 
Theoremmstri3 15143 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( A D B )  <_  ( ( A D C )  +  ( B D C ) ) )
 
Theoremmsrtri 15144 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  X  =  ( Base `  M )   &    |-  D  =  (
 dist `  M )   =>    |-  ( ( M  e.  MetSp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  ( abs `  ( ( A D C )  -  ( B D C ) ) )  <_  ( A D B ) )
 
Theoremxmspropd 15145 Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  (
 ( dist `  K )  |`  ( B  X.  B ) )  =  (
 ( dist `  L )  |`  ( B  X.  B ) ) )   &    |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  *MetSp  <->  L  e.  *MetSp ) )
 
Theoremmspropd 15146 Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  (
 ( dist `  K )  |`  ( B  X.  B ) )  =  (
 ( dist `  L )  |`  ( B  X.  B ) ) )   &    |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )
 
Theoremsetsmsbasg 15147 The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  X  =  ( Base `  K )
 )
 
Theoremsetsmsdsg 15148 The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( dist `  M )  =  ( dist `  K )
 )
 
Theoremsetsmstsetg 15149 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( MetOpen `  D )  =  (TopSet `  K ) )
 
Theoremmopni 15150* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  ran  ( ball `  D )
 ( P  e.  x  /\  x  C_  A ) )
 
Theoremmopni2 15151* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  RR+  ( P ( ball `  D ) x )  C_  A )
 
Theoremmopni3 15152* An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A )  /\  R  e.  RR+ )  ->  E. x  e.  RR+  ( x  <  R  /\  ( P (
 ball `  D ) x )  C_  A )
 )
 
Theoremblssopn 15153 The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  C_  J )
 
Theoremunimopn 15154 The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremmopnin 15155 The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  B  e.  J ) 
 ->  ( A  i^i  B )  e.  J )
 
Theoremmopn0 15156 The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  -> 
 (/)  e.  J )
 
Theoremrnblopn 15157 A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )
 )  ->  B  e.  J )
 
Theoremblopn 15158 A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  J )
 
Theoremneibl 15159* The neighborhoods around a point  P of a metric space are those subsets containing a ball around  P. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P }
 ) 
 <->  ( N  C_  X  /\  E. r  e.  RR+  ( P ( ball `  D ) r )  C_  N ) ) )
 
Theoremblnei 15160 A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } ) )
 
Theoremblsscls2 15161* A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
 |-  J  =  ( MetOpen `  D )   &    |-  S  =  {
 z  e.  X  |  ( P D z ) 
 <_  R }   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T ) )  ->  S  C_  ( P ( ball `  D ) T ) )
 
Theoremmetss 15162* Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J 
 C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x (
 ball `  D ) s )  C_  ( x ( ball `  C )
 r ) ) )
 
Theoremmetequiv 15163* Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D )
 s )  C_  ( x ( ball `  C ) r )  /\  A. a  e.  RR+  E. b  e.  RR+  ( x (
 ball `  C ) b )  C_  ( x ( ball `  D )
 a ) ) ) )
 
Theoremmetequiv2 15164* If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
 ball `  D ) s ) )  ->  J  =  K ) )
 
Theoremmetss2lem 15165* Lemma for metss2 15166. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ( ph  /\  ( x  e.  X  /\  S  e.  RR+ ) ) 
 ->  ( x ( ball `  D ) ( S 
 /  R ) ) 
 C_  ( x (
 ball `  C ) S ) )
 
Theoremmetss2 15166* If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), then  D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ph  ->  J  C_  K )
 
Theoremcomet 15167* The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ph  ->  D  e.  ( *Met `  X ) )   &    |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )   &    |-  ( ( ph  /\  x  e.  ( 0 [,] +oo ) )  ->  ( ( F `  x )  =  0  <->  x  =  0 ) )   &    |-  ( ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( x  <_  y  ->  ( F `  x ) 
 <_  ( F `  y
 ) ) )   &    |-  (
 ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `  y ) ) )   =>    |-  ( ph  ->  ( F  o.  D )  e.  ( *Met `  X )
 )
 
Theorembdmetval 15168* Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C : ( X  X.  X ) --> RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
 
Theorembdxmet 15169* The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X ) )
 
Theorembdmet 15170* The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
 
Theorembdbl 15171* The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D ) S )  =  ( P ( ball `  C ) S ) )
 
Theorembdmopn 15172* The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   &    |-  J  =  ( MetOpen `  C )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  ( MetOpen `  D )
 )
 
Theoremmopnex 15173* The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  E. d  e.  ( Met `  X ) J  =  ( MetOpen `  d
 ) )
 
Theoremmetrest 15174 Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
 |-  D  =  ( C  |`  ( Y  X.  Y ) )   &    |-  J  =  (
 MetOpen `  C )   &    |-  K  =  ( MetOpen `  D )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  =  K )
 
Theoremxmetxp 15175* The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   =>    |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
 
Theoremxmetxpbl 15176* The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  C  e.  ( X  X.  Y ) )   =>    |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  (
 ( 2nd `  C )
 ( ball `  N ) R ) ) )
 
Theoremxmettxlem 15177* Lemma for xmettx 15178. (Contributed by Jim Kingdon, 15-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  C_  ( J  tX  K ) )
 
Theoremxmettx 15178* The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  =  ( J  tX  K )
 )
 
9.2.5  Continuity in metric spaces
 
Theoremmetcnp3 15179* Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C )
 z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
 
Theoremmetcnp 15180* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnp2 15181* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. The distance arguments are swapped compared to metcnp 15180 (and Munkres' metcn 15182) for compatibility with df-lm 14858. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  <  z  ->  (
 ( F `  w ) D ( F `  P ) )  < 
 y ) ) ) )
 
Theoremmetcn 15182* Two ways to say a mapping from metric  C to metric  D is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon"  y there is a positive "delta"  z such that a distance less than delta in  C maps to a distance less than epsilon in  D. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  ->  ( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnpi 15183* Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 15180. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  <  x  ->  ( ( F `  P ) D ( F `  y ) )  <  A ) )
 
Theoremmetcnpi2 15184* Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 15181. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) )
 
Theoremmetcnpi3 15185* Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 15184 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
 )
 
Theoremtxmetcnp 15186* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 /\  ( A  e.  X  /\  B  e.  Y ) )  ->  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) ) )
 
Theoremtxmetcn 15187* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 ->  ( F  e.  (
 ( J  tX  K )  Cn  L )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
 ( ( x C u )  <  w  /\  ( y D v )  <  w ) 
 ->  ( ( x F y ) E ( u F v ) )  <  z ) ) ) )
 
Theoremmetcnpd 15188* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by Jim Kingdon, 14-Jun-2023.)
 |-  ( ph  ->  J  =  ( MetOpen `  C )
 )   &    |-  ( ph  ->  K  =  ( MetOpen `  D )
 )   &    |-  ( ph  ->  C  e.  ( *Met `  X ) )   &    |-  ( ph  ->  D  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  P  e.  X )   =>    |-  ( ph  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X
 --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
9.2.6  Topology on the reals
 
Theoremqtopbasss 15189* The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  S  C_  RR*   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S )   =>    |-  ( (,) " ( S  X.  S ) )  e.  TopBases
 
Theoremqtopbas 15190 The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
 |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
 
Theoremretopbas 15191 A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
 |- 
 ran  (,)  e.  TopBases
 
Theoremretop 15192 The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
 |-  ( topGen `  ran  (,) )  e.  Top
 
Theoremuniretop 15193 The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.)
 |- 
 RR  =  U. ( topGen `
  ran  (,) )
 
Theoremretopon 15194 The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( topGen `  ran  (,) )  e.  (TopOn `  RR )
 
Theoremretps 15195 The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.)
 |-  K  =  { <. (
 Base `  ndx ) ,  RR >. ,  <. (TopSet `  ndx ) ,  ( topGen `  ran  (,) ) >. }   =>    |-  K  e.  TopSp
 
Theoremiooretopg 15196 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ( topGen `  ran  (,) ) )
 
Theoremcnmetdval 15197 Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremcnmet 15198 The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
 |-  ( abs  o.  -  )  e.  ( Met `  CC )
 
Theoremcnxmet 15199 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( abs  o.  -  )  e.  ( *Met `  CC )
 
Theoremcntoptopon 15200 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  (TopOn `  CC )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >