| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > setindft | Unicode version | ||
| Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| setindft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1555 |
. . 3
| |
| 2 | nfv 1542 |
. . . . . 6
| |
| 3 | nfnf1 1558 |
. . . . . . 7
| |
| 4 | 3 | nfal 1590 |
. . . . . 6
|
| 5 | nfsbt 1995 |
. . . . . 6
| |
| 6 | nfv 1542 |
. . . . . . 7
| |
| 7 | 6 | a1i 9 |
. . . . . 6
|
| 8 | sbequ 1854 |
. . . . . . 7
| |
| 9 | 8 | a1i 9 |
. . . . . 6
|
| 10 | 2, 4, 5, 7, 9 | cbvrald 15434 |
. . . . 5
|
| 11 | 10 | biimpd 144 |
. . . 4
|
| 12 | 11 | imim1d 75 |
. . 3
|
| 13 | 1, 12 | alimd 1535 |
. 2
|
| 14 | ax-setind 4573 |
. 2
| |
| 15 | 13, 14 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: setindf 15612 |
| Copyright terms: Public domain | W3C validator |