Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpm | Unicode version |
Description: If an infinite Cartesian product of a family is inhabited, every is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
ixpm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp 6665 | . . . 4 | |
2 | 1 | abeq2i 2277 | . . 3 |
3 | elex2 2742 | . . . 4 | |
4 | 3 | ralimi 2529 | . . 3 |
5 | 2, 4 | simplbiim 385 | . 2 |
6 | 5 | exlimiv 1586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 wcel 2136 cab 2151 wral 2444 wfn 5183 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-v 2728 df-ixp 6665 |
This theorem is referenced by: ixp0 6697 |
Copyright terms: Public domain | W3C validator |