ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpm Unicode version

Theorem ixpm 6732
Description: If an infinite Cartesian product of a family  B ( x ) is inhabited, every  B ( x ) is inhabited. (Contributed by Mario Carneiro, 22-Jun-2016.) (Revised by Jim Kingdon, 16-Feb-2023.)
Assertion
Ref Expression
ixpm  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
Distinct variable groups:    A, f    z,
f, B    x, f,
z
Allowed substitution hints:    A( x, z)    B( x)

Proof of Theorem ixpm
StepHypRef Expression
1 df-ixp 6701 . . . 4  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
) }
21abeq2i 2288 . . 3  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
f `  x )  e.  B ) )
3 elex2 2755 . . . 4  |-  ( ( f `  x )  e.  B  ->  E. z 
z  e.  B )
43ralimi 2540 . . 3  |-  ( A. x  e.  A  (
f `  x )  e.  B  ->  A. x  e.  A  E. z 
z  e.  B )
52, 4simplbiim 387 . 2  |-  ( f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
65exlimiv 1598 1  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  E. z  z  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492    e. wcel 2148   {cab 2163   A.wral 2455    Fn wfn 5213   ` cfv 5218   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-v 2741  df-ixp 6701
This theorem is referenced by:  ixp0  6733
  Copyright terms: Public domain W3C validator