ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le Unicode version

Theorem zltaddlt1le 10073
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9321 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 276 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  M  e.  RR )
3 elioore 9978 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR )
43adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
52, 4readdcld 8049 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  ( M  +  A )  e.  RR )
653adant2 1018 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  e.  RR )
7 zre 9321 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
873ad2ant2 1021 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
9 ltle 8107 . . 3  |-  ( ( ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  +  A )  <  N  ->  ( M  +  A
)  <_  N )
)
106, 8, 9syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  ->  ( M  +  A )  <_  N ) )
11 elioo3g 9976 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  A  e. 
RR* )  /\  (
0  <  A  /\  A  <  1 ) ) )
12 simpl 109 . . . . . 6  |-  ( ( 0  <  A  /\  A  <  1 )  -> 
0  <  A )
1311, 12simplbiim 387 . . . . 5  |-  ( A  e.  ( 0 (,) 1 )  ->  0  <  A )
143, 13elrpd 9759 . . . 4  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR+ )
15 addlelt 9834 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
161, 7, 14, 15syl3an 1291 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
17 zltp1le 9371 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
18173adant3 1019 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
1933ad2ant3 1022 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
20 1red 8034 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
2113ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
22 simpr 110 . . . . . . . 8  |-  ( ( 0  <  A  /\  A  <  1 )  ->  A  <  1 )
2311, 22simplbiim 387 . . . . . . 7  |-  ( A  e.  ( 0 (,) 1 )  ->  A  <  1 )
24233ad2ant3 1022 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  <  1 )
2519, 20, 21, 24ltadd2dd 8441 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  <  ( M  +  1 ) )
26 peano2z 9353 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
2726zred 9439 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
28273ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  1 )  e.  RR )
29 ltletr 8109 . . . . . 6  |-  ( ( ( M  +  A
)  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  A )  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  ( M  +  A )  <  N ) )
306, 28, 8, 29syl3anc 1249 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( ( M  +  A )  <  ( M  +  1 )  /\  ( M  + 
1 )  <_  N
)  ->  ( M  +  A )  <  N
) )
3125, 30mpand 429 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  1 )  <_  N  ->  ( M  +  A )  <  N ) )
3218, 31sylbid 150 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  ->  ( M  +  A )  <  N ) )
3316, 32syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  ( M  +  A )  <  N ) )
3410, 33impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875   RR*cxr 8053    < clt 8054    <_ cle 8055   ZZcz 9317   RR+crp 9719   (,)cioo 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-rp 9720  df-ioo 9958
This theorem is referenced by:  halfleoddlt  12035
  Copyright terms: Public domain W3C validator