ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le Unicode version

Theorem zltaddlt1le 10131
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9378 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 276 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  M  e.  RR )
3 elioore 10036 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR )
43adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
52, 4readdcld 8104 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  ( M  +  A )  e.  RR )
653adant2 1019 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  e.  RR )
7 zre 9378 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
873ad2ant2 1022 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
9 ltle 8162 . . 3  |-  ( ( ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  +  A )  <  N  ->  ( M  +  A
)  <_  N )
)
106, 8, 9syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  ->  ( M  +  A )  <_  N ) )
11 elioo3g 10034 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  A  e. 
RR* )  /\  (
0  <  A  /\  A  <  1 ) ) )
12 simpl 109 . . . . . 6  |-  ( ( 0  <  A  /\  A  <  1 )  -> 
0  <  A )
1311, 12simplbiim 387 . . . . 5  |-  ( A  e.  ( 0 (,) 1 )  ->  0  <  A )
143, 13elrpd 9817 . . . 4  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR+ )
15 addlelt 9892 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
161, 7, 14, 15syl3an 1292 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
17 zltp1le 9429 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
18173adant3 1020 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
1933ad2ant3 1023 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
20 1red 8089 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
2113ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
22 simpr 110 . . . . . . . 8  |-  ( ( 0  <  A  /\  A  <  1 )  ->  A  <  1 )
2311, 22simplbiim 387 . . . . . . 7  |-  ( A  e.  ( 0 (,) 1 )  ->  A  <  1 )
24233ad2ant3 1023 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  <  1 )
2519, 20, 21, 24ltadd2dd 8497 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  <  ( M  +  1 ) )
26 peano2z 9410 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
2726zred 9497 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
28273ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  1 )  e.  RR )
29 ltletr 8164 . . . . . 6  |-  ( ( ( M  +  A
)  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  A )  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  ( M  +  A )  <  N ) )
306, 28, 8, 29syl3anc 1250 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( ( M  +  A )  <  ( M  +  1 )  /\  ( M  + 
1 )  <_  N
)  ->  ( M  +  A )  <  N
) )
3125, 30mpand 429 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  1 )  <_  N  ->  ( M  +  A )  <  N ) )
3218, 31sylbid 150 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  ->  ( M  +  A )  <  N ) )
3316, 32syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  ( M  +  A )  <  N ) )
3410, 33impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4045  (class class class)co 5946   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930   RR*cxr 8108    < clt 8109    <_ cle 8110   ZZcz 9374   RR+crp 9777   (,)cioo 10012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-rp 9778  df-ioo 10016
This theorem is referenced by:  halfleoddlt  12238
  Copyright terms: Public domain W3C validator