ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le Unicode version

Theorem zltaddlt1le 10164
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9411 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 276 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  M  e.  RR )
3 elioore 10069 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR )
43adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
52, 4readdcld 8137 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  ( M  +  A )  e.  RR )
653adant2 1019 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  e.  RR )
7 zre 9411 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
873ad2ant2 1022 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
9 ltle 8195 . . 3  |-  ( ( ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  +  A )  <  N  ->  ( M  +  A
)  <_  N )
)
106, 8, 9syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  ->  ( M  +  A )  <_  N ) )
11 elioo3g 10067 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  A  e. 
RR* )  /\  (
0  <  A  /\  A  <  1 ) ) )
12 simpl 109 . . . . . 6  |-  ( ( 0  <  A  /\  A  <  1 )  -> 
0  <  A )
1311, 12simplbiim 387 . . . . 5  |-  ( A  e.  ( 0 (,) 1 )  ->  0  <  A )
143, 13elrpd 9850 . . . 4  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR+ )
15 addlelt 9925 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
161, 7, 14, 15syl3an 1292 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
17 zltp1le 9462 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
18173adant3 1020 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
1933ad2ant3 1023 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
20 1red 8122 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
2113ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
22 simpr 110 . . . . . . . 8  |-  ( ( 0  <  A  /\  A  <  1 )  ->  A  <  1 )
2311, 22simplbiim 387 . . . . . . 7  |-  ( A  e.  ( 0 (,) 1 )  ->  A  <  1 )
24233ad2ant3 1023 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  <  1 )
2519, 20, 21, 24ltadd2dd 8530 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  <  ( M  +  1 ) )
26 peano2z 9443 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
2726zred 9530 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
28273ad2ant1 1021 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  1 )  e.  RR )
29 ltletr 8197 . . . . . 6  |-  ( ( ( M  +  A
)  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  A )  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  ( M  +  A )  <  N ) )
306, 28, 8, 29syl3anc 1250 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( ( M  +  A )  <  ( M  +  1 )  /\  ( M  + 
1 )  <_  N
)  ->  ( M  +  A )  <  N
) )
3125, 30mpand 429 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  1 )  <_  N  ->  ( M  +  A )  <  N ) )
3218, 31sylbid 150 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  ->  ( M  +  A )  <  N ) )
3316, 32syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  ( M  +  A )  <  N ) )
3410, 33impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963   RR*cxr 8141    < clt 8142    <_ cle 8143   ZZcz 9407   RR+crp 9810   (,)cioo 10045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-rp 9811  df-ioo 10049
This theorem is referenced by:  halfleoddlt  12320
  Copyright terms: Public domain W3C validator