ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le Unicode version

Theorem zltaddlt1le 9789
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9058 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 274 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  M  e.  RR )
3 elioore 9695 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR )
43adantl 275 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
52, 4readdcld 7795 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  ( M  +  A )  e.  RR )
653adant2 1000 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  e.  RR )
7 zre 9058 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
873ad2ant2 1003 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
9 ltle 7851 . . 3  |-  ( ( ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  +  A )  <  N  ->  ( M  +  A
)  <_  N )
)
106, 8, 9syl2anc 408 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  ->  ( M  +  A )  <_  N ) )
11 elioo3g 9693 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  A  e. 
RR* )  /\  (
0  <  A  /\  A  <  1 ) ) )
12 simpl 108 . . . . . 6  |-  ( ( 0  <  A  /\  A  <  1 )  -> 
0  <  A )
1311, 12simplbiim 384 . . . . 5  |-  ( A  e.  ( 0 (,) 1 )  ->  0  <  A )
143, 13elrpd 9481 . . . 4  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR+ )
15 addlelt 9555 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
161, 7, 14, 15syl3an 1258 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
17 zltp1le 9108 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
18173adant3 1001 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
1933ad2ant3 1004 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
20 1red 7781 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
2113ad2ant1 1002 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
22 simpr 109 . . . . . . . 8  |-  ( ( 0  <  A  /\  A  <  1 )  ->  A  <  1 )
2311, 22simplbiim 384 . . . . . . 7  |-  ( A  e.  ( 0 (,) 1 )  ->  A  <  1 )
24233ad2ant3 1004 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  <  1 )
2519, 20, 21, 24ltadd2dd 8184 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  <  ( M  +  1 ) )
26 peano2z 9090 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
2726zred 9173 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
28273ad2ant1 1002 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  1 )  e.  RR )
29 ltletr 7853 . . . . . 6  |-  ( ( ( M  +  A
)  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  A )  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  ( M  +  A )  <  N ) )
306, 28, 8, 29syl3anc 1216 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( ( M  +  A )  <  ( M  +  1 )  /\  ( M  + 
1 )  <_  N
)  ->  ( M  +  A )  <  N
) )
3125, 30mpand 425 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  1 )  <_  N  ->  ( M  +  A )  <  N ) )
3218, 31sylbid 149 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  ->  ( M  +  A )  <  N ) )
3316, 32syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  ( M  +  A )  <  N ) )
3410, 33impbid 128 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623   RR*cxr 7799    < clt 7800    <_ cle 7801   ZZcz 9054   RR+crp 9441   (,)cioo 9671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-rp 9442  df-ioo 9675
This theorem is referenced by:  halfleoddlt  11591
  Copyright terms: Public domain W3C validator