ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltaddlt1le Unicode version

Theorem zltaddlt1le 10099
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
zltaddlt1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )

Proof of Theorem zltaddlt1le
StepHypRef Expression
1 zre 9347 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
21adantr 276 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  M  e.  RR )
3 elioore 10004 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR )
43adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  A  e.  RR )
52, 4readdcld 8073 . . . 4  |-  ( ( M  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) )  ->  ( M  +  A )  e.  RR )
653adant2 1018 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  e.  RR )
7 zre 9347 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
873ad2ant2 1021 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  N  e.  RR )
9 ltle 8131 . . 3  |-  ( ( ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  +  A )  <  N  ->  ( M  +  A
)  <_  N )
)
106, 8, 9syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  ->  ( M  +  A )  <_  N ) )
11 elioo3g 10002 . . . . . 6  |-  ( A  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  A  e. 
RR* )  /\  (
0  <  A  /\  A  <  1 ) ) )
12 simpl 109 . . . . . 6  |-  ( ( 0  <  A  /\  A  <  1 )  -> 
0  <  A )
1311, 12simplbiim 387 . . . . 5  |-  ( A  e.  ( 0 (,) 1 )  ->  0  <  A )
143, 13elrpd 9785 . . . 4  |-  ( A  e.  ( 0 (,) 1 )  ->  A  e.  RR+ )
15 addlelt 9860 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
161, 7, 14, 15syl3an 1291 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
17 zltp1le 9397 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
18173adant3 1019 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
1933ad2ant3 1022 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  e.  RR )
20 1red 8058 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  1  e.  RR )
2113ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  M  e.  RR )
22 simpr 110 . . . . . . . 8  |-  ( ( 0  <  A  /\  A  <  1 )  ->  A  <  1 )
2311, 22simplbiim 387 . . . . . . 7  |-  ( A  e.  ( 0 (,) 1 )  ->  A  <  1 )
24233ad2ant3 1022 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  A  <  1 )
2519, 20, 21, 24ltadd2dd 8466 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  A )  <  ( M  +  1 ) )
26 peano2z 9379 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
2726zred 9465 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
28273ad2ant1 1020 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  +  1 )  e.  RR )
29 ltletr 8133 . . . . . 6  |-  ( ( ( M  +  A
)  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  +  A )  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  ( M  +  A )  <  N ) )
306, 28, 8, 29syl3anc 1249 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( ( M  +  A )  <  ( M  +  1 )  /\  ( M  + 
1 )  <_  N
)  ->  ( M  +  A )  <  N
) )
3125, 30mpand 429 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  1 )  <_  N  ->  ( M  +  A )  <  N ) )
3218, 31sylbid 150 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  ( M  <  N  ->  ( M  +  A )  <  N ) )
3316, 32syld 45 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <_  N  ->  ( M  +  A )  <  N ) )
3410, 33impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1
) )  ->  (
( M  +  A
)  <  N  <->  ( M  +  A )  <_  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899   RR*cxr 8077    < clt 8078    <_ cle 8079   ZZcz 9343   RR+crp 9745   (,)cioo 9980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-rp 9746  df-ioo 9984
This theorem is referenced by:  halfleoddlt  12076
  Copyright terms: Public domain W3C validator