ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsscn Unicode version

Theorem apsscn 8537
Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
apsscn  |-  { x  e.  A  |  x #  B }  C_  CC
Distinct variable groups:    x, A    x, B

Proof of Theorem apsscn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 3980 . . . . 5  |-  ( x  =  y  ->  (
x #  B  <->  y #  B
) )
21elrab 2878 . . . 4  |-  ( y  e.  { x  e.  A  |  x #  B } 
<->  ( y  e.  A  /\  y #  B )
)
3 aprcl 8536 . . . 4  |-  ( y #  B  ->  ( y  e.  CC  /\  B  e.  CC ) )
42, 3simplbiim 385 . . 3  |-  ( y  e.  { x  e.  A  |  x #  B }  ->  ( y  e.  CC  /\  B  e.  CC ) )
54simpld 111 . 2  |-  ( y  e.  { x  e.  A  |  x #  B }  ->  y  e.  CC )
65ssriv 3142 1  |-  { x  e.  A  |  x #  B }  C_  CC
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 2135   {crab 2446    C_ wss 3112   class class class wbr 3977   CCcc 7743   # cap 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-resscn 7837  ax-icn 7840  ax-addcl 7841  ax-mulcl 7843
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2724  df-sbc 2948  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-fo 5189  df-fv 5191  df-1st 6101  df-2nd 6102  df-ap 8472
This theorem is referenced by:  limccoap  13214  dveflem  13254
  Copyright terms: Public domain W3C validator