ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsscn Unicode version

Theorem apsscn 8674
Description: The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
Assertion
Ref Expression
apsscn  |-  { x  e.  A  |  x #  B }  C_  CC
Distinct variable groups:    x, A    x, B

Proof of Theorem apsscn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4036 . . . . 5  |-  ( x  =  y  ->  (
x #  B  <->  y #  B
) )
21elrab 2920 . . . 4  |-  ( y  e.  { x  e.  A  |  x #  B } 
<->  ( y  e.  A  /\  y #  B )
)
3 aprcl 8673 . . . 4  |-  ( y #  B  ->  ( y  e.  CC  /\  B  e.  CC ) )
42, 3simplbiim 387 . . 3  |-  ( y  e.  { x  e.  A  |  x #  B }  ->  ( y  e.  CC  /\  B  e.  CC ) )
54simpld 112 . 2  |-  ( y  e.  { x  e.  A  |  x #  B }  ->  y  e.  CC )
65ssriv 3187 1  |-  { x  e.  A  |  x #  B }  C_  CC
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2167   {crab 2479    C_ wss 3157   class class class wbr 4033   CCcc 7877   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-resscn 7971  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-1st 6198  df-2nd 6199  df-ap 8609
This theorem is referenced by:  expghmap  14163  maxcncf  14851  mincncf  14852  limccoap  14914  dveflem  14962
  Copyright terms: Public domain W3C validator