ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddnn02np1 Unicode version

Theorem oddnn02np1 11577
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
oddnn02np1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem oddnn02np1
StepHypRef Expression
1 eleq1 2202 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  e.  NN0  <->  N  e.  NN0 ) )
2 elnn0z 9067 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  <->  ( ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  0  <_ 
( ( 2  x.  n )  +  1 ) ) )
3 2tnp1ge0ge0 10074 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  <->  0  <_  n ) )
43biimpd 143 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  -> 
0  <_  n )
)
54imdistani 441 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  0  <_  ( ( 2  x.  n )  +  1 ) )  -> 
( n  e.  ZZ  /\  0  <_  n )
)
65expcom 115 . . . . . . . . . 10  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  ( n  e.  ZZ  /\  0  <_  n ) ) )
7 elnn0z 9067 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
86, 7syl6ibr 161 . . . . . . . . 9  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) )
92, 8simplbiim 384 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
101, 9syl6bir 163 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1110com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) ) )
1211impcom 124 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) )
1312pm4.71rd 391 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1413bicomd 140 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N )  <->  ( (
2  x.  n )  +  1 )  =  N ) )
1514rexbidva 2434 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
16 nn0ssz 9072 . . 3  |-  NN0  C_  ZZ
17 rexss 3164 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1816, 17mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N ) ) )
19 nn0z 9074 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
20 odd2np1 11570 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2119, 20syl 14 . 2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2215, 18, 213bitr4rd 220 1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   class class class wbr 3929  (class class class)co 5774   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    <_ cle 7801   2c2 8771   NN0cn0 8977   ZZcz 9054    || cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-xor 1354  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-dvds 11494
This theorem is referenced by:  oddge22np1  11578
  Copyright terms: Public domain W3C validator