ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddnn02np1 Unicode version

Theorem oddnn02np1 11422
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
oddnn02np1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem oddnn02np1
StepHypRef Expression
1 eleq1 2177 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  e.  NN0  <->  N  e.  NN0 ) )
2 elnn0z 8968 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  <->  ( ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  0  <_ 
( ( 2  x.  n )  +  1 ) ) )
3 2tnp1ge0ge0 9964 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  <->  0  <_  n ) )
43biimpd 143 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  -> 
0  <_  n )
)
54imdistani 439 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  0  <_  ( ( 2  x.  n )  +  1 ) )  -> 
( n  e.  ZZ  /\  0  <_  n )
)
65expcom 115 . . . . . . . . . 10  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  ( n  e.  ZZ  /\  0  <_  n ) ) )
7 elnn0z 8968 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
86, 7syl6ibr 161 . . . . . . . . 9  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) )
92, 8simplbiim 382 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
101, 9syl6bir 163 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1110com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) ) )
1211impcom 124 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) )
1312pm4.71rd 389 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1413bicomd 140 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N )  <->  ( (
2  x.  n )  +  1 )  =  N ) )
1514rexbidva 2408 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
16 nn0ssz 8973 . . 3  |-  NN0  C_  ZZ
17 rexss 3130 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1816, 17mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N ) ) )
19 nn0z 8975 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
20 odd2np1 11415 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2119, 20syl 14 . 2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2215, 18, 213bitr4rd 220 1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   E.wrex 2391    C_ wss 3037   class class class wbr 3895  (class class class)co 5728   0cc0 7544   1c1 7545    + caddc 7547    x. cmul 7549    <_ cle 7722   2c2 8678   NN0cn0 8878   ZZcz 8955    || cdvds 11338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7633  ax-resscn 7634  ax-1cn 7635  ax-1re 7636  ax-icn 7637  ax-addcl 7638  ax-addrcl 7639  ax-mulcl 7640  ax-mulrcl 7641  ax-addcom 7642  ax-mulcom 7643  ax-addass 7644  ax-mulass 7645  ax-distr 7646  ax-i2m1 7647  ax-0lt1 7648  ax-1rid 7649  ax-0id 7650  ax-rnegex 7651  ax-precex 7652  ax-cnre 7653  ax-pre-ltirr 7654  ax-pre-ltwlin 7655  ax-pre-lttrn 7656  ax-pre-apti 7657  ax-pre-ltadd 7658  ax-pre-mulgt0 7659  ax-pre-mulext 7660
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-xor 1337  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7723  df-mnf 7724  df-xr 7725  df-ltxr 7726  df-le 7727  df-sub 7855  df-neg 7856  df-reap 8252  df-ap 8259  df-div 8343  df-inn 8628  df-2 8686  df-n0 8879  df-z 8956  df-dvds 11339
This theorem is referenced by:  oddge22np1  11423
  Copyright terms: Public domain W3C validator