ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddnn02np1 Unicode version

Theorem oddnn02np1 11887
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
oddnn02np1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem oddnn02np1
StepHypRef Expression
1 eleq1 2240 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  e.  NN0  <->  N  e.  NN0 ) )
2 elnn0z 9268 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  <->  ( ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  0  <_ 
( ( 2  x.  n )  +  1 ) ) )
3 2tnp1ge0ge0 10303 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  <->  0  <_  n ) )
43biimpd 144 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  -> 
0  <_  n )
)
54imdistani 445 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  0  <_  ( ( 2  x.  n )  +  1 ) )  -> 
( n  e.  ZZ  /\  0  <_  n )
)
65expcom 116 . . . . . . . . . 10  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  ( n  e.  ZZ  /\  0  <_  n ) ) )
7 elnn0z 9268 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
86, 7imbitrrdi 162 . . . . . . . . 9  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) )
92, 8simplbiim 387 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
101, 9syl6bir 164 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1110com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) ) )
1211impcom 125 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) )
1312pm4.71rd 394 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1413bicomd 141 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N )  <->  ( (
2  x.  n )  +  1 )  =  N ) )
1514rexbidva 2474 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
16 nn0ssz 9273 . . 3  |-  NN0  C_  ZZ
17 rexss 3224 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1816, 17mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N ) ) )
19 nn0z 9275 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
20 odd2np1 11880 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2119, 20syl 14 . 2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2215, 18, 213bitr4rd 221 1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456    C_ wss 3131   class class class wbr 4005  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    <_ cle 7995   2c2 8972   NN0cn0 9178   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-dvds 11797
This theorem is referenced by:  oddge22np1  11888
  Copyright terms: Public domain W3C validator