ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddnn02np1 Unicode version

Theorem oddnn02np1 11817
Description: A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
oddnn02np1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem oddnn02np1
StepHypRef Expression
1 eleq1 2229 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  e.  NN0  <->  N  e.  NN0 ) )
2 elnn0z 9204 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  <->  ( ( ( 2  x.  n )  +  1 )  e.  ZZ  /\  0  <_ 
( ( 2  x.  n )  +  1 ) ) )
3 2tnp1ge0ge0 10236 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  <->  0  <_  n ) )
43biimpd 143 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  (
0  <_  ( (
2  x.  n )  +  1 )  -> 
0  <_  n )
)
54imdistani 442 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  0  <_  ( ( 2  x.  n )  +  1 ) )  -> 
( n  e.  ZZ  /\  0  <_  n )
)
65expcom 115 . . . . . . . . . 10  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  ( n  e.  ZZ  /\  0  <_  n ) ) )
7 elnn0z 9204 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
86, 7syl6ibr 161 . . . . . . . . 9  |-  ( 0  <_  ( ( 2  x.  n )  +  1 )  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) )
92, 8simplbiim 385 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
101, 9syl6bir 163 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1110com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) ) )
1211impcom 124 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  n  e.  NN0 ) )
1312pm4.71rd 392 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1413bicomd 140 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N )  <->  ( (
2  x.  n )  +  1 )  =  N ) )
1514rexbidva 2463 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
16 nn0ssz 9209 . . 3  |-  NN0  C_  ZZ
17 rexss 3209 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( ( 2  x.  n )  +  1 )  =  N ) ) )
1816, 17mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
( 2  x.  n
)  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( (
2  x.  n )  +  1 )  =  N ) ) )
19 nn0z 9211 . . 3  |-  ( N  e.  NN0  ->  N  e.  ZZ )
20 odd2np1 11810 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2119, 20syl 14 . 2  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2215, 18, 213bitr4rd 220 1  |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  ( ( 2  x.  n )  +  1 )  =  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   class class class wbr 3982  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    <_ cle 7934   2c2 8908   NN0cn0 9114   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  oddge22np1  11818
  Copyright terms: Public domain W3C validator