ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpodifsnif Unicode version

Theorem mpodifsnif 6038
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpodifsnif  |-  ( i  e.  ( A  \  { X } ) ,  j  e.  B  |->  if ( i  =  X ,  C ,  D
) )  =  ( i  e.  ( A 
\  { X }
) ,  j  e.  B  |->  D )

Proof of Theorem mpodifsnif
StepHypRef Expression
1 eldifsn 3760 . . . . 5  |-  ( i  e.  ( A  \  { X } )  <->  ( i  e.  A  /\  i  =/=  X ) )
2 neneq 2398 . . . . 5  |-  ( i  =/=  X  ->  -.  i  =  X )
31, 2simplbiim 387 . . . 4  |-  ( i  e.  ( A  \  { X } )  ->  -.  i  =  X
)
43adantr 276 . . 3  |-  ( ( i  e.  ( A 
\  { X }
)  /\  j  e.  B )  ->  -.  i  =  X )
54iffalsed 3581 . 2  |-  ( ( i  e.  ( A 
\  { X }
)  /\  j  e.  B )  ->  if ( i  =  X ,  C ,  D
)  =  D )
65mpoeq3ia 6010 1  |-  ( i  e.  ( A  \  { X } ) ,  j  e.  B  |->  if ( i  =  X ,  C ,  D
) )  =  ( i  e.  ( A 
\  { X }
) ,  j  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376    \ cdif 3163   ifcif 3571   {csn 3633    e. cmpo 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-if 3572  df-sn 3639  df-oprab 5948  df-mpo 5949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator