| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpodifsnif | Unicode version | ||
| Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.) |
| Ref | Expression |
|---|---|
| mpodifsnif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3749 |
. . . . 5
| |
| 2 | neneq 2389 |
. . . . 5
| |
| 3 | 1, 2 | simplbiim 387 |
. . . 4
|
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | 4 | iffalsed 3571 |
. 2
|
| 6 | 5 | mpoeq3ia 5987 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-if 3562 df-sn 3628 df-oprab 5926 df-mpo 5927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |