ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpodifsnif Unicode version

Theorem mpodifsnif 6011
Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
Assertion
Ref Expression
mpodifsnif  |-  ( i  e.  ( A  \  { X } ) ,  j  e.  B  |->  if ( i  =  X ,  C ,  D
) )  =  ( i  e.  ( A 
\  { X }
) ,  j  e.  B  |->  D )

Proof of Theorem mpodifsnif
StepHypRef Expression
1 eldifsn 3745 . . . . 5  |-  ( i  e.  ( A  \  { X } )  <->  ( i  e.  A  /\  i  =/=  X ) )
2 neneq 2386 . . . . 5  |-  ( i  =/=  X  ->  -.  i  =  X )
31, 2simplbiim 387 . . . 4  |-  ( i  e.  ( A  \  { X } )  ->  -.  i  =  X
)
43adantr 276 . . 3  |-  ( ( i  e.  ( A 
\  { X }
)  /\  j  e.  B )  ->  -.  i  =  X )
54iffalsed 3567 . 2  |-  ( ( i  e.  ( A 
\  { X }
)  /\  j  e.  B )  ->  if ( i  =  X ,  C ,  D
)  =  D )
65mpoeq3ia 5983 1  |-  ( i  e.  ( A  \  { X } ) ,  j  e.  B  |->  if ( i  =  X ,  C ,  D
) )  =  ( i  e.  ( A 
\  { X }
) ,  j  e.  B  |->  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364    \ cdif 3150   ifcif 3557   {csn 3618    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-if 3558  df-sn 3624  df-oprab 5922  df-mpo 5923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator