ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finct Unicode version

Theorem finct 6994
Description: A finite set is countable. (Contributed by Jim Kingdon, 17-Mar-2023.)
Assertion
Ref Expression
finct  |-  ( A  e.  Fin  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, g

Proof of Theorem finct
Dummy variables  f  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fidcenum 6837 . 2  |-  ( A  e.  Fin  <->  ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  E. n  e. 
om  E. f  f : n -onto-> A ) )
2 enumct 6993 . 2  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
31, 2simplbiim 384 1  |-  ( A  e.  Fin  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 819   E.wex 1468    e. wcel 1480   A.wral 2414   E.wrex 2415   omcom 4499   -onto->wfo 5116   1oc1o 6299   Fincfn 6627   ⊔ cdju 6915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630  df-dju 6916  df-inl 6925  df-inr 6926  df-case 6962
This theorem is referenced by:  unct  11943
  Copyright terms: Public domain W3C validator