| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrpass | Unicode version | ||
| Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpass.b |
|
| sgrpass.o |
|
| Ref | Expression |
|---|---|
| sgrpass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpass.b |
. . . 4
| |
| 2 | sgrpass.o |
. . . 4
| |
| 3 | 1, 2 | issgrp 13279 |
. . 3
|
| 4 | oveq1 5958 |
. . . . . . 7
| |
| 5 | 4 | oveq1d 5966 |
. . . . . 6
|
| 6 | oveq1 5958 |
. . . . . 6
| |
| 7 | 5, 6 | eqeq12d 2221 |
. . . . 5
|
| 8 | oveq2 5959 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 5966 |
. . . . . 6
|
| 10 | oveq1 5958 |
. . . . . . 7
| |
| 11 | 10 | oveq2d 5967 |
. . . . . 6
|
| 12 | 9, 11 | eqeq12d 2221 |
. . . . 5
|
| 13 | oveq2 5959 |
. . . . . 6
| |
| 14 | oveq2 5959 |
. . . . . . 7
| |
| 15 | 14 | oveq2d 5967 |
. . . . . 6
|
| 16 | 13, 15 | eqeq12d 2221 |
. . . . 5
|
| 17 | 7, 12, 16 | rspc3v 2894 |
. . . 4
|
| 18 | 17 | com12 30 |
. . 3
|
| 19 | 3, 18 | simplbiim 387 |
. 2
|
| 20 | 19 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fn 5279 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-sgrp 13278 |
| This theorem is referenced by: prdssgrpd 13291 mndass 13300 dfgrp2 13403 dfgrp3mlem 13474 dfgrp3me 13476 mulgnndir 13531 rngass 13745 rnglidlmsgrp 14303 |
| Copyright terms: Public domain | W3C validator |