ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpass Unicode version

Theorem sgrpass 13284
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b  |-  B  =  ( Base `  G
)
sgrpass.o  |-  .o.  =  ( +g  `  G )
Assertion
Ref Expression
sgrpass  |-  ( ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )

Proof of Theorem sgrpass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4  |-  B  =  ( Base `  G
)
2 sgrpass.o . . . 4  |-  .o.  =  ( +g  `  G )
31, 2issgrp 13279 . . 3  |-  ( G  e. Smgrp 
<->  ( G  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
4 oveq1 5958 . . . . . . 7  |-  ( x  =  X  ->  (
x  .o.  y )  =  ( X  .o.  y ) )
54oveq1d 5966 . . . . . 6  |-  ( x  =  X  ->  (
( x  .o.  y
)  .o.  z )  =  ( ( X  .o.  y )  .o.  z ) )
6 oveq1 5958 . . . . . 6  |-  ( x  =  X  ->  (
x  .o.  ( y  .o.  z ) )  =  ( X  .o.  (
y  .o.  z )
) )
75, 6eqeq12d 2221 . . . . 5  |-  ( x  =  X  ->  (
( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  y )  .o.  z )  =  ( X  .o.  ( y  .o.  z ) ) ) )
8 oveq2 5959 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .o.  y )  =  ( X  .o.  Y
) )
98oveq1d 5966 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .o.  y
)  .o.  z )  =  ( ( X  .o.  Y )  .o.  z ) )
10 oveq1 5958 . . . . . . 7  |-  ( y  =  Y  ->  (
y  .o.  z )  =  ( Y  .o.  z ) )
1110oveq2d 5967 . . . . . 6  |-  ( y  =  Y  ->  ( X  .o.  ( y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  z ) ) )
129, 11eqeq12d 2221 . . . . 5  |-  ( y  =  Y  ->  (
( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o.  z )  =  ( X  .o.  ( Y  .o.  z ) ) ) )
13 oveq2 5959 . . . . . 6  |-  ( z  =  Z  ->  (
( X  .o.  Y
)  .o.  z )  =  ( ( X  .o.  Y )  .o. 
Z ) )
14 oveq2 5959 . . . . . . 7  |-  ( z  =  Z  ->  ( Y  .o.  z )  =  ( Y  .o.  Z
) )
1514oveq2d 5967 . . . . . 6  |-  ( z  =  Z  ->  ( X  .o.  ( Y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  Z ) ) )
1613, 15eqeq12d 2221 . . . . 5  |-  ( z  =  Z  ->  (
( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
177, 12, 16rspc3v 2894 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) )  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
1817com12 30 . . 3  |-  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
193, 18simplbiim 387 . 2  |-  ( G  e. Smgrp  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2019imp 124 1  |-  ( ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953  Mgmcmgm 13230  Smgrpcsgrp 13277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-sgrp 13278
This theorem is referenced by:  prdssgrpd  13291  mndass  13300  dfgrp2  13403  dfgrp3mlem  13474  dfgrp3me  13476  mulgnndir  13531  rngass  13745  rnglidlmsgrp  14303
  Copyright terms: Public domain W3C validator