ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpass Unicode version

Theorem sgrpass 13427
Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
Hypotheses
Ref Expression
sgrpass.b  |-  B  =  ( Base `  G
)
sgrpass.o  |-  .o.  =  ( +g  `  G )
Assertion
Ref Expression
sgrpass  |-  ( ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )

Proof of Theorem sgrpass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpass.b . . . 4  |-  B  =  ( Base `  G
)
2 sgrpass.o . . . 4  |-  .o.  =  ( +g  `  G )
31, 2issgrp 13422 . . 3  |-  ( G  e. Smgrp 
<->  ( G  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
4 oveq1 6001 . . . . . . 7  |-  ( x  =  X  ->  (
x  .o.  y )  =  ( X  .o.  y ) )
54oveq1d 6009 . . . . . 6  |-  ( x  =  X  ->  (
( x  .o.  y
)  .o.  z )  =  ( ( X  .o.  y )  .o.  z ) )
6 oveq1 6001 . . . . . 6  |-  ( x  =  X  ->  (
x  .o.  ( y  .o.  z ) )  =  ( X  .o.  (
y  .o.  z )
) )
75, 6eqeq12d 2244 . . . . 5  |-  ( x  =  X  ->  (
( ( x  .o.  y )  .o.  z
)  =  ( x  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  y )  .o.  z )  =  ( X  .o.  ( y  .o.  z ) ) ) )
8 oveq2 6002 . . . . . . 7  |-  ( y  =  Y  ->  ( X  .o.  y )  =  ( X  .o.  Y
) )
98oveq1d 6009 . . . . . 6  |-  ( y  =  Y  ->  (
( X  .o.  y
)  .o.  z )  =  ( ( X  .o.  Y )  .o.  z ) )
10 oveq1 6001 . . . . . . 7  |-  ( y  =  Y  ->  (
y  .o.  z )  =  ( Y  .o.  z ) )
1110oveq2d 6010 . . . . . 6  |-  ( y  =  Y  ->  ( X  .o.  ( y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  z ) ) )
129, 11eqeq12d 2244 . . . . 5  |-  ( y  =  Y  ->  (
( ( X  .o.  y )  .o.  z
)  =  ( X  .o.  ( y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o.  z )  =  ( X  .o.  ( Y  .o.  z ) ) ) )
13 oveq2 6002 . . . . . 6  |-  ( z  =  Z  ->  (
( X  .o.  Y
)  .o.  z )  =  ( ( X  .o.  Y )  .o. 
Z ) )
14 oveq2 6002 . . . . . . 7  |-  ( z  =  Z  ->  ( Y  .o.  z )  =  ( Y  .o.  Z
) )
1514oveq2d 6010 . . . . . 6  |-  ( z  =  Z  ->  ( X  .o.  ( Y  .o.  z ) )  =  ( X  .o.  ( Y  .o.  Z ) ) )
1613, 15eqeq12d 2244 . . . . 5  |-  ( z  =  Z  ->  (
( ( X  .o.  Y )  .o.  z
)  =  ( X  .o.  ( Y  .o.  z ) )  <->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
177, 12, 16rspc3v 2923 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) )  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
1817com12 30 . . 3  |-  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) )  ->  (
( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
193, 18simplbiim 387 . 2  |-  ( G  e. Smgrp  ->  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  (
( X  .o.  Y
)  .o.  Z )  =  ( X  .o.  ( Y  .o.  Z ) ) ) )
2019imp 124 1  |-  ( ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .o.  Y )  .o. 
Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096  Mgmcmgm 13373  Smgrpcsgrp 13420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-sgrp 13421
This theorem is referenced by:  prdssgrpd  13434  mndass  13443  dfgrp2  13546  dfgrp3mlem  13617  dfgrp3me  13619  mulgnndir  13674  rngass  13888  rnglidlmsgrp  14446
  Copyright terms: Public domain W3C validator