| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrpass | Unicode version | ||
| Description: A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpass.b |
|
| sgrpass.o |
|
| Ref | Expression |
|---|---|
| sgrpass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrpass.b |
. . . 4
| |
| 2 | sgrpass.o |
. . . 4
| |
| 3 | 1, 2 | issgrp 13444 |
. . 3
|
| 4 | oveq1 6014 |
. . . . . . 7
| |
| 5 | 4 | oveq1d 6022 |
. . . . . 6
|
| 6 | oveq1 6014 |
. . . . . 6
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . . 5
|
| 8 | oveq2 6015 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 6022 |
. . . . . 6
|
| 10 | oveq1 6014 |
. . . . . . 7
| |
| 11 | 10 | oveq2d 6023 |
. . . . . 6
|
| 12 | 9, 11 | eqeq12d 2244 |
. . . . 5
|
| 13 | oveq2 6015 |
. . . . . 6
| |
| 14 | oveq2 6015 |
. . . . . . 7
| |
| 15 | 14 | oveq2d 6023 |
. . . . . 6
|
| 16 | 13, 15 | eqeq12d 2244 |
. . . . 5
|
| 17 | 7, 12, 16 | rspc3v 2923 |
. . . 4
|
| 18 | 17 | com12 30 |
. . 3
|
| 19 | 3, 18 | simplbiim 387 |
. 2
|
| 20 | 19 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-sgrp 13443 |
| This theorem is referenced by: prdssgrpd 13456 mndass 13465 dfgrp2 13568 dfgrp3mlem 13639 dfgrp3me 13641 mulgnndir 13696 rngass 13910 rnglidlmsgrp 14469 |
| Copyright terms: Public domain | W3C validator |