ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqbg Unicode version

Theorem sneqbg 3607
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
sneqbg  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )

Proof of Theorem sneqbg
StepHypRef Expression
1 sneqrg 3606 . 2  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
2 sneq 3457 . 2  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2impbid1 140 1  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   {csn 3446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sn 3452
This theorem is referenced by:  infpwfidom  6822
  Copyright terms: Public domain W3C validator