ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqbg Unicode version

Theorem sneqbg 3690
Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
sneqbg  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )

Proof of Theorem sneqbg
StepHypRef Expression
1 sneqrg 3689 . 2  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
2 sneq 3538 . 2  |-  ( A  =  B  ->  { A }  =  { B } )
31, 2impbid1 141 1  |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   {csn 3527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sn 3533
This theorem is referenced by:  infpwfidom  7059
  Copyright terms: Public domain W3C validator