ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg Unicode version

Theorem sneqrg 3816
Description: Closed form of sneqr 3814. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )

Proof of Theorem sneqrg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3654 . . . 4  |-  ( x  =  A  ->  { x }  =  { A } )
21eqeq1d 2216 . . 3  |-  ( x  =  A  ->  ( { x }  =  { B }  <->  { A }  =  { B } ) )
3 eqeq1 2214 . . 3  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
42, 3imbi12d 234 . 2  |-  ( x  =  A  ->  (
( { x }  =  { B }  ->  x  =  B )  <->  ( { A }  =  { B }  ->  A  =  B ) ) )
5 vex 2779 . . 3  |-  x  e. 
_V
65sneqr 3814 . 2  |-  ( { x }  =  { B }  ->  x  =  B )
74, 6vtoclg 2838 1  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sn 3649
This theorem is referenced by:  sneqbg  3817
  Copyright terms: Public domain W3C validator