ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg Unicode version

Theorem sneqrg 3792
Description: Closed form of sneqr 3790. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )

Proof of Theorem sneqrg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3633 . . . 4  |-  ( x  =  A  ->  { x }  =  { A } )
21eqeq1d 2205 . . 3  |-  ( x  =  A  ->  ( { x }  =  { B }  <->  { A }  =  { B } ) )
3 eqeq1 2203 . . 3  |-  ( x  =  A  ->  (
x  =  B  <->  A  =  B ) )
42, 3imbi12d 234 . 2  |-  ( x  =  A  ->  (
( { x }  =  { B }  ->  x  =  B )  <->  ( { A }  =  { B }  ->  A  =  B ) ) )
5 vex 2766 . . 3  |-  x  e. 
_V
65sneqr 3790 . 2  |-  ( { x }  =  { B }  ->  x  =  B )
74, 6vtoclg 2824 1  |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628
This theorem is referenced by:  sneqbg  3793
  Copyright terms: Public domain W3C validator