![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneq | Unicode version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2203 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | abbidv 2311 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-sn 3624 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-sn 3624 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2251 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-sn 3624 |
This theorem is referenced by: sneqi 3630 sneqd 3631 euabsn 3688 absneu 3690 preq1 3695 tpeq3 3706 snssgOLD 3754 sneqrg 3788 sneqbg 3789 opeq1 3804 unisng 3852 exmidsssn 4231 exmidsssnc 4232 suceq 4433 snnex 4479 opeliunxp 4714 relop 4812 elimasng 5033 dmsnsnsng 5143 elxp4 5153 elxp5 5154 iotajust 5214 fconstg 5450 f1osng 5541 nfvres 5588 fsng 5731 fnressn 5744 fressnfv 5745 funfvima3 5792 isoselem 5863 1stvalg 6195 2ndvalg 6196 2ndval2 6209 fo1st 6210 fo2nd 6211 f1stres 6212 f2ndres 6213 mpomptsx 6250 dmmpossx 6252 fmpox 6253 brtpos2 6304 dftpos4 6316 tpostpos 6317 eceq1 6622 fvdiagfn 6747 mapsncnv 6749 elixpsn 6789 ixpsnf1o 6790 ensn1g 6851 en1 6853 xpsneng 6876 xpcomco 6880 xpassen 6884 xpdom2 6885 phplem3 6910 phplem3g 6912 fidifsnen 6926 xpfi 6986 pm54.43 7250 cc2lem 7326 cc2 7327 exp3val 10612 fsum2dlemstep 11577 fsumcnv 11580 fisumcom2 11581 fprod2dlemstep 11765 fprodcnv 11768 fprodcom2fi 11769 lssats2 13910 lspsneq0 13922 txswaphmeolem 14488 |
Copyright terms: Public domain | W3C validator |