| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2217 |
. . 3
| |
| 2 | 1 | abbidv 2325 |
. 2
|
| 3 | df-sn 3649 |
. 2
| |
| 4 | df-sn 3649 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-sn 3649 |
| This theorem is referenced by: sneqi 3655 sneqd 3656 euabsn 3713 absneu 3715 preq1 3720 tpeq3 3731 snssgOLD 3780 sneqrg 3816 sneqbg 3817 opeq1 3833 unisng 3881 exmidsssn 4262 exmidsssnc 4263 suceq 4467 snnex 4513 opeliunxp 4748 relop 4846 elimasng 5069 dmsnsnsng 5179 elxp4 5189 elxp5 5190 iotajust 5250 fconstg 5494 f1osng 5586 nfvres 5633 fsng 5776 funopsn 5785 fnressn 5793 fressnfv 5794 funfvima3 5841 isoselem 5912 1stvalg 6251 2ndvalg 6252 2ndval2 6265 fo1st 6266 fo2nd 6267 f1stres 6268 f2ndres 6269 mpomptsx 6306 dmmpossx 6308 fmpox 6309 brtpos2 6360 dftpos4 6372 tpostpos 6373 eceq1 6678 fvdiagfn 6803 mapsncnv 6805 elixpsn 6845 ixpsnf1o 6846 ensn1g 6912 en1 6914 xpsneng 6942 xpcomco 6946 xpassen 6950 xpdom2 6951 phplem3 6976 phplem3g 6978 fidifsnen 6993 xpfi 7055 pm54.43 7324 cc2lem 7413 cc2 7414 exp3val 10723 fsum2dlemstep 11860 fsumcnv 11863 fisumcom2 11864 fprod2dlemstep 12048 fprodcnv 12051 fprodcom2fi 12052 pwsval 13238 lssats2 14291 lspsneq0 14303 txswaphmeolem 14907 |
| Copyright terms: Public domain | W3C validator |