| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2239 |
. . 3
| |
| 2 | 1 | abbidv 2347 |
. 2
|
| 3 | df-sn 3672 |
. 2
| |
| 4 | df-sn 3672 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-sn 3672 |
| This theorem is referenced by: sneqi 3678 sneqd 3679 euabsn 3736 absneu 3738 preq1 3743 tpeq3 3754 snssgOLD 3804 sneqrg 3840 sneqbg 3841 opeq1 3857 unisng 3905 exmidsssn 4286 exmidsssnc 4287 suceq 4493 snnex 4539 opeliunxp 4774 relop 4872 elimasng 5096 dmsnsnsng 5206 elxp4 5216 elxp5 5217 iotajust 5277 fconstg 5522 f1osng 5614 nfvres 5663 fsng 5808 funopsn 5817 fnressn 5825 fressnfv 5826 funfvima3 5873 isoselem 5944 1stvalg 6288 2ndvalg 6289 2ndval2 6302 fo1st 6303 fo2nd 6304 f1stres 6305 f2ndres 6306 mpomptsx 6343 dmmpossx 6345 fmpox 6346 brtpos2 6397 dftpos4 6409 tpostpos 6410 eceq1 6715 fvdiagfn 6840 mapsncnv 6842 elixpsn 6882 ixpsnf1o 6883 ensn1g 6949 en1 6951 xpsneng 6981 xpcomco 6985 xpassen 6989 xpdom2 6990 phplem3 7015 phplem3g 7017 fidifsnen 7032 xpfi 7094 pm54.43 7363 cc2lem 7452 cc2 7453 exp3val 10763 fsum2dlemstep 11945 fsumcnv 11948 fisumcom2 11949 fprod2dlemstep 12133 fprodcnv 12136 fprodcom2fi 12137 pwsval 13324 lssats2 14378 lspsneq0 14390 txswaphmeolem 14994 wlk1walkdom 16070 |
| Copyright terms: Public domain | W3C validator |