| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . 3
| |
| 2 | 1 | abbidv 2323 |
. 2
|
| 3 | df-sn 3639 |
. 2
| |
| 4 | df-sn 3639 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-sn 3639 |
| This theorem is referenced by: sneqi 3645 sneqd 3646 euabsn 3703 absneu 3705 preq1 3710 tpeq3 3721 snssgOLD 3769 sneqrg 3803 sneqbg 3804 opeq1 3819 unisng 3867 exmidsssn 4246 exmidsssnc 4247 suceq 4449 snnex 4495 opeliunxp 4730 relop 4828 elimasng 5050 dmsnsnsng 5160 elxp4 5170 elxp5 5171 iotajust 5231 fconstg 5472 f1osng 5563 nfvres 5610 fsng 5753 funopsn 5762 fnressn 5770 fressnfv 5771 funfvima3 5818 isoselem 5889 1stvalg 6228 2ndvalg 6229 2ndval2 6242 fo1st 6243 fo2nd 6244 f1stres 6245 f2ndres 6246 mpomptsx 6283 dmmpossx 6285 fmpox 6286 brtpos2 6337 dftpos4 6349 tpostpos 6350 eceq1 6655 fvdiagfn 6780 mapsncnv 6782 elixpsn 6822 ixpsnf1o 6823 ensn1g 6889 en1 6891 xpsneng 6917 xpcomco 6921 xpassen 6925 xpdom2 6926 phplem3 6951 phplem3g 6953 fidifsnen 6967 xpfi 7029 pm54.43 7298 cc2lem 7378 cc2 7379 exp3val 10686 fsum2dlemstep 11745 fsumcnv 11748 fisumcom2 11749 fprod2dlemstep 11933 fprodcnv 11936 fprodcom2fi 11937 pwsval 13123 lssats2 14176 lspsneq0 14188 txswaphmeolem 14792 |
| Copyright terms: Public domain | W3C validator |