| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 |
. . 3
| |
| 2 | 1 | abbidv 2314 |
. 2
|
| 3 | df-sn 3629 |
. 2
| |
| 4 | df-sn 3629 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3629 |
| This theorem is referenced by: sneqi 3635 sneqd 3636 euabsn 3693 absneu 3695 preq1 3700 tpeq3 3711 snssgOLD 3759 sneqrg 3793 sneqbg 3794 opeq1 3809 unisng 3857 exmidsssn 4236 exmidsssnc 4237 suceq 4438 snnex 4484 opeliunxp 4719 relop 4817 elimasng 5038 dmsnsnsng 5148 elxp4 5158 elxp5 5159 iotajust 5219 fconstg 5457 f1osng 5548 nfvres 5595 fsng 5738 fnressn 5751 fressnfv 5752 funfvima3 5799 isoselem 5870 1stvalg 6209 2ndvalg 6210 2ndval2 6223 fo1st 6224 fo2nd 6225 f1stres 6226 f2ndres 6227 mpomptsx 6264 dmmpossx 6266 fmpox 6267 brtpos2 6318 dftpos4 6330 tpostpos 6331 eceq1 6636 fvdiagfn 6761 mapsncnv 6763 elixpsn 6803 ixpsnf1o 6804 ensn1g 6865 en1 6867 xpsneng 6890 xpcomco 6894 xpassen 6898 xpdom2 6899 phplem3 6924 phplem3g 6926 fidifsnen 6940 xpfi 7002 pm54.43 7269 cc2lem 7349 cc2 7350 exp3val 10650 fsum2dlemstep 11616 fsumcnv 11619 fisumcom2 11620 fprod2dlemstep 11804 fprodcnv 11807 fprodcom2fi 11808 pwsval 12993 lssats2 14046 lspsneq0 14058 txswaphmeolem 14640 |
| Copyright terms: Public domain | W3C validator |