| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sneq | Unicode version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| sneq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq2 2206 | 
. . 3
 | |
| 2 | 1 | abbidv 2314 | 
. 2
 | 
| 3 | df-sn 3628 | 
. 2
 | |
| 4 | df-sn 3628 | 
. 2
 | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-sn 3628 | 
| This theorem is referenced by: sneqi 3634 sneqd 3635 euabsn 3692 absneu 3694 preq1 3699 tpeq3 3710 snssgOLD 3758 sneqrg 3792 sneqbg 3793 opeq1 3808 unisng 3856 exmidsssn 4235 exmidsssnc 4236 suceq 4437 snnex 4483 opeliunxp 4718 relop 4816 elimasng 5037 dmsnsnsng 5147 elxp4 5157 elxp5 5158 iotajust 5218 fconstg 5454 f1osng 5545 nfvres 5592 fsng 5735 fnressn 5748 fressnfv 5749 funfvima3 5796 isoselem 5867 1stvalg 6200 2ndvalg 6201 2ndval2 6214 fo1st 6215 fo2nd 6216 f1stres 6217 f2ndres 6218 mpomptsx 6255 dmmpossx 6257 fmpox 6258 brtpos2 6309 dftpos4 6321 tpostpos 6322 eceq1 6627 fvdiagfn 6752 mapsncnv 6754 elixpsn 6794 ixpsnf1o 6795 ensn1g 6856 en1 6858 xpsneng 6881 xpcomco 6885 xpassen 6889 xpdom2 6890 phplem3 6915 phplem3g 6917 fidifsnen 6931 xpfi 6993 pm54.43 7257 cc2lem 7333 cc2 7334 exp3val 10633 fsum2dlemstep 11599 fsumcnv 11602 fisumcom2 11603 fprod2dlemstep 11787 fprodcnv 11790 fprodcom2fi 11791 lssats2 13970 lspsneq0 13982 txswaphmeolem 14556 | 
| Copyright terms: Public domain | W3C validator |