HomeHome Intuitionistic Logic Explorer
Theorem List (p. 38 of 122)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelint2 3701* Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
 |-  A  e.  _V   =>    |-  ( A  e.  |^|
 B 
 <-> 
 A. x  e.  B  A  e.  x )
 
Theoremelintg 3702* Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
 |-  ( A  e.  V  ->  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
 )
 
Theoremelinti 3703 Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  |^| B 
 ->  ( C  e.  B  ->  A  e.  C ) )
 
Theoremnfint 3704 Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  F/_ x A   =>    |-  F/_ x |^| A
 
Theoremelintab 3705* Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  |^|
 { x  |  ph }  <->  A. x ( ph  ->  A  e.  x ) )
 
Theoremelintrab 3706* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
 |-  A  e.  _V   =>    |-  ( A  e.  |^|
 { x  e.  B  |  ph }  <->  A. x  e.  B  ( ph  ->  A  e.  x ) )
 
Theoremelintrabg 3707* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
 |-  ( A  e.  V  ->  ( A  e.  |^| { x  e.  B  |  ph
 } 
 <-> 
 A. x  e.  B  ( ph  ->  A  e.  x ) ) )
 
Theoremint0 3708 The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
 |- 
 |^| (/)  =  _V
 
Theoremintss1 3709 An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
 |-  ( A  e.  B  -> 
 |^| B  C_  A )
 
Theoremssint 3710* Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  |^| B  <->  A. x  e.  B  A  C_  x )
 
Theoremssintab 3711* Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  C_  |^| { x  |  ph }  <->  A. x ( ph  ->  A  C_  x )
 )
 
Theoremssintub 3712* Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
 |-  A  C_  |^| { x  e.  B  |  A  C_  x }
 
Theoremssmin 3713* Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
 |-  A  C_  |^| { x  |  ( A  C_  x  /\  ph ) }
 
Theoremintmin 3714* Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( A  e.  B  -> 
 |^| { x  e.  B  |  A  C_  x }  =  A )
 
Theoremintss 3715 Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  -> 
 |^| B  C_  |^| A )
 
Theoremintssunim 3716* The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
 |-  ( E. x  x  e.  A  ->  |^| A  C_ 
 U. A )
 
Theoremssintrab 3717* Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
 |-  ( A  C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  ( ph  ->  A  C_  x ) )
 
Theoremintssuni2m 3718* Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
 |-  ( ( A  C_  B  /\  E. x  x  e.  A )  ->  |^| A  C_  U. B )
 
Theoremintminss 3719* Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
 
Theoremintmin2 3720* Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  |^| { x  |  A  C_  x }  =  A
 
Theoremintmin3 3721* Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ps   =>    |-  ( A  e.  V  ->  |^|
 { x  |  ph } 
 C_  A )
 
Theoremintmin4 3722* Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
 |-  ( A  C_  |^| { x  |  ph }  ->  |^| { x  |  ( A  C_  x  /\  ph ) }  =  |^|
 { x  |  ph } )
 
Theoremintab 3723* The intersection of a special case of a class abstraction.  y may be free in  ph and  A, which can be thought of a  ph ( y ) and  A ( y ). (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  A  e.  _V   &    |-  { x  |  E. y ( ph  /\  x  =  A ) }  e.  _V   =>    |-  |^| { x  |  A. y ( ph  ->  A  e.  x ) }  =  { x  |  E. y ( ph  /\  x  =  A ) }
 
Theoremint0el 3724 The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
 |-  ( (/)  e.  A  -> 
 |^| A  =  (/) )
 
Theoremintun 3725 The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
 |- 
 |^| ( A  u.  B )  =  ( |^| A  i^i  |^| B )
 
Theoremintpr 3726 The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 |^| { A ,  B }  =  ( A  i^i  B )
 
Theoremintprg 3727 The intersection of a pair is the intersection of its members. Closed form of intpr 3726. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| { A ,  B }  =  ( A  i^i  B ) )
 
Theoremintsng 3728 Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( A  e.  V  -> 
 |^| { A }  =  A )
 
Theoremintsn 3729 The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
 |-  A  e.  _V   =>    |-  |^| { A }  =  A
 
Theoremuniintsnr 3730* The union and intersection of a singleton are equal. See also eusn 3520. (Contributed by Jim Kingdon, 14-Aug-2018.)
 |-  ( E. x  A  =  { x }  ->  U. A  =  |^| A )
 
Theoremuniintabim 3731 The union and the intersection of a class abstraction are equal if there is a unique satisfying value of  ph ( x ). (Contributed by Jim Kingdon, 14-Aug-2018.)
 |-  ( E! x ph  ->  U. { x  |  ph
 }  =  |^| { x  |  ph } )
 
Theoremintunsn 3732 Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
 |-  B  e.  _V   =>    |-  |^| ( A  u.  { B } )  =  ( |^| A  i^i  B )
 
Theoremrint0 3733 Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )
 
Theoremelrint 3734* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( X  e.  ( A  i^i  |^| B )  <->  ( X  e.  A  /\  A. y  e.  B  X  e.  y
 ) )
 
Theoremelrint2 3735* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( X  e.  A  ->  ( X  e.  ( A  i^i  |^| B )  <->  A. y  e.  B  X  e.  y )
 )
 
2.1.20  Indexed union and intersection
 
Syntaxciun 3736 Extend class notation to include indexed union. Note: Historically (prior to 21-Oct-2005), set.mm used the notation  U. x  e.  A B, with the same union symbol as cuni 3659. While that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses as distinguished symbol  U_ instead of  U. and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
 class  U_ x  e.  A  B
 
Syntaxciin 3737 Extend class notation to include indexed intersection. Note: Historically (prior to 21-Oct-2005), set.mm used the notation  |^| x  e.  A B, with the same intersection symbol as cint 3694. Although that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol  |^|_ instead of  |^| and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
 class  |^|_
 x  e.  A  B
 
Definitiondf-iun 3738* Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications,  A is independent of  x (although this is not required by the definition), and  B depends on  x i.e. can be read informally as  B ( x ). We call  x the index,  A the index set, and  B the indexed set. In most books,  x  e.  A is written as a subscript or underneath a union symbol  U.. We use a special union symbol  U_ to make it easier to distinguish from plain class union. In many theorems, you will see that  x and 
A are in the same disjoint variable group (meaning  A cannot depend on  x) and that  B and  x do not share a disjoint variable group (meaning that can be thought of as  B ( x ) i.e. can be substituted with a class expression containing 
x). An alternate definition tying indexed union to ordinary union is dfiun2 3770. Theorem uniiun 3789 provides a definition of ordinary union in terms of indexed union. (Contributed by NM, 27-Jun-1998.)
 |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
 
Definitiondf-iin 3739* Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3738. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3771. Theorem intiin 3790 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
 |-  |^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
 
Theoremeliun 3740* Membership in indexed union. (Contributed by NM, 3-Sep-2003.)
 |-  ( A  e.  U_ x  e.  B  C  <->  E. x  e.  B  A  e.  C )
 
Theoremeliin 3741* Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
 |-  ( A  e.  V  ->  ( A  e.  |^|_ x  e.  B  C  <->  A. x  e.  B  A  e.  C )
 )
 
Theoremiuncom 3742* Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
 |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
 
Theoremiuncom4 3743 Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
 |-  U_ x  e.  A  U. B  =  U. U_ x  e.  A  B
 
Theoremiunconstm 3744* Indexed union of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 15-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  U_ x  e.  A  B  =  B )
 
Theoremiinconstm 3745* Indexed intersection of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 19-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  |^|_ x  e.  A  B  =  B )
 
Theoremiuniin 3746* Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  U_ x  e.  A  |^|_
 y  e.  B  C  C_  |^|_ y  e.  B  U_ x  e.  A  C
 
Theoremiunss1 3747* Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  C_  B  -> 
 U_ x  e.  A  C  C_  U_ x  e.  B  C )
 
Theoremiinss1 3748* Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.)
 |-  ( A  C_  B  -> 
 |^|_ x  e.  B  C  C_  |^|_ x  e.  A  C )
 
Theoremiuneq1 3749* Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
 |-  ( A  =  B  -> 
 U_ x  e.  A  C  =  U_ x  e.  B  C )
 
Theoremiineq1 3750* Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
 |-  ( A  =  B  -> 
 |^|_ x  e.  A  C  =  |^|_ x  e.  B  C )
 
Theoremss2iun 3751 Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A. x  e.  A  B  C_  C  -> 
 U_ x  e.  A  B  C_  U_ x  e.  A  C )
 
Theoremiuneq2 3752 Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
 |-  ( A. x  e.  A  B  =  C  -> 
 U_ x  e.  A  B  =  U_ x  e.  A  C )
 
Theoremiineq2 3753 Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A. x  e.  A  B  =  C  -> 
 |^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
 
Theoremiuneq2i 3754 Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  U_ x  e.  A  B  =  U_ x  e.  A  C
 
Theoremiineq2i 3755 Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
 |-  ( x  e.  A  ->  B  =  C )   =>    |-  |^|_
 x  e.  A  B  =  |^|_ x  e.  A  C
 
Theoremiineq2d 3756 Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  =  C )   =>    |-  ( ph  ->  |^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
 
Theoremiuneq2dv 3757* Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
 
Theoremiineq2dv 3758* Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( ph  /\  x  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  |^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
 
Theoremiuneq1d 3759* Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  C )
 
Theoremiuneq12d 3760* Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  U_ x  e.  A  C  =  U_ x  e.  B  D )
 
Theoremiuneq2d 3761* Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
 
Theoremnfiunxy 3762* Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y U_ x  e.  A  B
 
Theoremnfiinxy 3763* Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y |^|_ x  e.  A  B
 
Theoremnfiunya 3764* Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y U_ x  e.  A  B
 
Theoremnfiinya 3765* Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
 |-  F/_ y A   &    |-  F/_ y B   =>    |-  F/_ y |^|_ x  e.  A  B
 
Theoremnfiu1 3766 Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
 |-  F/_ x U_ x  e.  A  B
 
Theoremnfii1 3767 Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
 |-  F/_ x |^|_ x  e.  A  B
 
Theoremdfiun2g 3768* Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
 )
 
Theoremdfiin2g 3769* Alternate definition of indexed intersection when  B is a set. (Contributed by Jeff Hankins, 27-Aug-2009.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
 )
 
Theoremdfiun2 3770* Alternate definition of indexed union when  B is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  B  e.  _V   =>    |-  U_ x  e.  A  B  =  U. { y  |  E. x  e.  A  y  =  B }
 
Theoremdfiin2 3771* Alternate definition of indexed intersection when  B is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  B  e.  _V   =>    |-  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B }
 
Theoremdfiunv2 3772* Define double indexed union. (Contributed by FL, 6-Nov-2013.)
 |-  U_ x  e.  A  U_ y  e.  B  C  =  { z  |  E. x  e.  A  E. y  e.  B  z  e.  C }
 
Theoremcbviun 3773* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  U_ x  e.  A  B  =  U_ y  e.  A  C
 
Theoremcbviin 3774* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ y B   &    |-  F/_ x C   &    |-  ( x  =  y  ->  B  =  C )   =>    |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
 
Theoremcbviunv 3775* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  U_ x  e.  A  B  =  U_ y  e.  A  C
 
Theoremcbviinv 3776* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.)
 |-  ( x  =  y 
 ->  B  =  C )   =>    |-  |^|_
 x  e.  A  B  =  |^|_ y  e.  A  C
 
Theoremiunss 3777* Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( U_ x  e.  A  B  C_  C  <->  A. x  e.  A  B  C_  C )
 
Theoremssiun 3778* Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( E. x  e.  A  C  C_  B  ->  C  C_  U_ x  e.  A  B )
 
Theoremssiun2 3779 Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( x  e.  A  ->  B  C_  U_ x  e.  A  B )
 
Theoremssiun2s 3780* Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
 |-  ( x  =  C  ->  B  =  D )   =>    |-  ( C  e.  A  ->  D  C_  U_ x  e.  A  B )
 
Theoremiunss2 3781* A subclass condition on the members of two indexed classes  C
( x ) and  D ( y ) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3690. (Contributed by NM, 9-Dec-2004.)
 |-  ( A. x  e.  A  E. y  e.  B  C  C_  D  -> 
 U_ x  e.  A  C  C_  U_ y  e.  B  D )
 
Theoremiunab 3782* The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
 |-  U_ x  e.  A  { y  |  ph }  =  { y  |  E. x  e.  A  ph }
 
Theoremiunrab 3783* The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  U_ x  e.  A  { y  e.  B  |  ph }  =  {
 y  e.  B  |  E. x  e.  A  ph
 }
 
Theoremiunxdif2 3784* Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
 |-  ( x  =  y 
 ->  C  =  D )   =>    |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C 
 C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
 
Theoremssiinf 3785 Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x C   =>    |-  ( C  C_  |^|_ x  e.  A  B  <->  A. x  e.  A  C  C_  B )
 
Theoremssiin 3786* Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
 |-  ( C  C_  |^|_ x  e.  A  B  <->  A. x  e.  A  C  C_  B )
 
Theoremiinss 3787* Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( E. x  e.  A  B  C_  C  -> 
 |^|_ x  e.  A  B  C_  C )
 
Theoremiinss2 3788 An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
 |-  ( x  e.  A  -> 
 |^|_ x  e.  A  B  C_  B )
 
Theoremuniiun 3789* Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
 |- 
 U. A  =  U_ x  e.  A  x
 
Theoremintiin 3790* Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
 |- 
 |^| A  =  |^|_ x  e.  A  x
 
Theoremiunid 3791* An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
 |-  U_ x  e.  A  { x }  =  A
 
Theoremiun0 3792 An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  U_ x  e.  A  (/) 
 =  (/)
 
Theorem0iun 3793 An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  U_ x  e.  (/)  A  =  (/)
 
Theorem0iin 3794 An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
 |-  |^|_ x  e.  (/)  A  =  _V
 
Theoremviin 3795* Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.)
 |-  |^|_ x  e.  _V  A  =  { y  |  A. x  y  e.  A }
 
Theoremiunn0m 3796* There is an inhabited class in an indexed collection  B
( x ) iff the indexed union of them is inhabited. (Contributed by Jim Kingdon, 16-Aug-2018.)
 |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y  y  e.  U_ x  e.  A  B )
 
Theoremiinab 3797* Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
 |-  |^|_ x  e.  A  {
 y  |  ph }  =  { y  |  A. x  e.  A  ph }
 
Theoremiinrabm 3798* Indexed intersection of a restricted class builder. (Contributed by Jim Kingdon, 16-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  A. x  e.  A  ph
 } )
 
Theoremiunin2 3799* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3789 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
 |-  U_ x  e.  A  ( B  i^i  C )  =  ( B  i^i  U_ x  e.  A  C )
 
Theoremiunin1 3800* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3789 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  U_ x  e.  A  ( C  i^i  B )  =  ( U_ x  e.  A  C  i^i  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12199
  Copyright terms: Public domain < Previous  Next >