HomeHome Intuitionistic Logic Explorer
Theorem List (p. 38 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeuabsn2 3701* Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
 |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y }
 )
 
Theoremeuabsn 3702 Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
 |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x }
 )
 
Theoremreusn 3703* A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
 |-  ( E! x  e.  A  ph  <->  E. y { x  e.  A  |  ph }  =  { y } )
 
Theoremabsneu 3704 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
 |-  ( ( A  e.  V  /\  { x  |  ph
 }  =  { A } )  ->  E! x ph )
 
Theoremrabsneu 3705 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
 |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x  e.  B  ph )
 
Theoremeusn 3706* Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010.)
 |-  ( E! x  x  e.  A  <->  E. x  A  =  { x } )
 
Theoremrabsnt 3707* Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
 |-  B  e.  _V   &    |-  ( x  =  B  ->  (
 ph 
 <->  ps ) )   =>    |-  ( { x  e.  A  |  ph }  =  { B }  ->  ps )
 
Theoremprcom 3708 Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
 |- 
 { A ,  B }  =  { B ,  A }
 
Theorempreq1 3709 Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
 |-  ( A  =  B  ->  { A ,  C }  =  { B ,  C } )
 
Theorempreq2 3710 Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B } )
 
Theorempreq12 3711 Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D }
 )
 
Theorempreq1i 3712 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  A  =  B   =>    |-  { A ,  C }  =  { B ,  C }
 
Theorempreq2i 3713 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  A  =  B   =>    |-  { C ,  A }  =  { C ,  B }
 
Theorempreq12i 3714 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  A  =  B   &    |-  C  =  D   =>    |- 
 { A ,  C }  =  { B ,  D }
 
Theorempreq1d 3715 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { A ,  C }  =  { B ,  C }
 )
 
Theorempreq2d 3716 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { C ,  A }  =  { C ,  B }
 )
 
Theorempreq12d 3717 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  { A ,  C }  =  { B ,  D } )
 
Theoremtpeq1 3718 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
 |-  ( A  =  B  ->  { A ,  C ,  D }  =  { B ,  C ,  D } )
 
Theoremtpeq2 3719 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
 |-  ( A  =  B  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )
 
Theoremtpeq3 3720 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
 |-  ( A  =  B  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )
 
Theoremtpeq1d 3721 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { A ,  C ,  D }  =  { B ,  C ,  D } )
 
Theoremtpeq2d 3722 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { C ,  A ,  D }  =  { C ,  B ,  D } )
 
Theoremtpeq3d 3723 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { C ,  D ,  A }  =  { C ,  D ,  B } )
 
Theoremtpeq123d 3724 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   &    |-  ( ph  ->  E  =  F )   =>    |-  ( ph  ->  { A ,  C ,  E }  =  { B ,  D ,  F } )
 
Theoremtprot 3725 Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
 |- 
 { A ,  B ,  C }  =  { B ,  C ,  A }
 
Theoremtpcoma 3726 Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.)
 |- 
 { A ,  B ,  C }  =  { B ,  A ,  C }
 
Theoremtpcomb 3727 Swap 2nd and 3rd members of an undordered triple. (Contributed by NM, 22-May-2015.)
 |- 
 { A ,  B ,  C }  =  { A ,  C ,  B }
 
Theoremtpass 3728 Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 { A ,  B ,  C }  =  ( { A }  u.  { B ,  C }
 )
 
Theoremqdass 3729 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )
 
Theoremqdassr 3730 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
 
Theoremtpidm12 3731 Unordered triple  { A ,  A ,  B } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
 |- 
 { A ,  A ,  B }  =  { A ,  B }
 
Theoremtpidm13 3732 Unordered triple  { A ,  B ,  A } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
 |- 
 { A ,  B ,  A }  =  { A ,  B }
 
Theoremtpidm23 3733 Unordered triple  { A ,  B ,  B } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
 |- 
 { A ,  B ,  B }  =  { A ,  B }
 
Theoremtpidm 3734 Unordered triple  { A ,  A ,  A } is just an overlong way to write  { A }. (Contributed by David A. Wheeler, 10-May-2015.)
 |- 
 { A ,  A ,  A }  =  { A }
 
Theoremtppreq3 3735 An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
 |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B }
 )
 
Theoremprid1g 3736 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
 |-  ( A  e.  V  ->  A  e.  { A ,  B } )
 
Theoremprid2g 3737 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
 |-  ( B  e.  V  ->  B  e.  { A ,  B } )
 
Theoremprid1 3738 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  A  e.  { A ,  B }
 
Theoremprid2 3739 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
 |-  B  e.  _V   =>    |-  B  e.  { A ,  B }
 
Theoremprprc1 3740 A proper class vanishes in an unordered pair. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A  e.  _V 
 ->  { A ,  B }  =  { B } )
 
Theoremprprc2 3741 A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.)
 |-  ( -.  B  e.  _V 
 ->  { A ,  B }  =  { A } )
 
Theoremprprc 3742 An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
 |-  ( ( -.  A  e.  _V  /\  -.  B  e.  _V )  ->  { A ,  B }  =  (/) )
 
Theoremtpid1 3743 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   =>    |-  A  e.  { A ,  B ,  C }
 
Theoremtpid1g 3744 Closed theorem form of tpid1 3743. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  e.  B  ->  A  e.  { A ,  C ,  D }
 )
 
Theoremtpid2 3745 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  B  e.  _V   =>    |-  B  e.  { A ,  B ,  C }
 
Theoremtpid2g 3746 Closed theorem form of tpid2 3745. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( A  e.  B  ->  A  e.  { C ,  A ,  D }
 )
 
Theoremtpid3g 3747 Closed theorem form of tpid3 3748. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( A  e.  B  ->  A  e.  { C ,  D ,  A }
 )
 
Theoremtpid3 3748 One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  C  e.  _V   =>    |-  C  e.  { A ,  B ,  C }
 
Theoremsnnzg 3749 The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
 |-  ( A  e.  V  ->  { A }  =/=  (/) )
 
Theoremsnmg 3750* The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( A  e.  V  ->  E. x  x  e. 
 { A } )
 
Theoremsnnz 3751 The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A }  =/= 
 (/)
 
Theoremsnm 3752* The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  A  e.  _V   =>    |-  E. x  x  e.  { A }
 
Theoremprmg 3753* A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( A  e.  V  ->  E. x  x  e. 
 { A ,  B } )
 
Theoremprnz 3754 A pair containing a set is not empty. It is also inhabited (see prm 3755). (Contributed by NM, 9-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A ,  B }  =/=  (/)
 
Theoremprm 3755* A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  A  e.  _V   =>    |-  E. x  x  e.  { A ,  B }
 
Theoremprnzg 3756 A pair containing a set is not empty. It is also inhabited (see prmg 3753). (Contributed by FL, 19-Sep-2011.)
 |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
 
Theoremtpnz 3757 A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A ,  B ,  C }  =/= 
 (/)
 
TheoremsnssOLD 3758 Obsolete version of snss 3767 as of 1-Jan-2025. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  C_  B )
 
Theoremeldifsn 3759 Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
 |-  ( A  e.  ( B  \  { C }
 ) 
 <->  ( A  e.  B  /\  A  =/=  C ) )
 
Theoremssdifsn 3760 Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
 |-  ( A  C_  ( B  \  { C }
 ) 
 <->  ( A  C_  B  /\  -.  C  e.  A ) )
 
Theoremeldifsni 3761 Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
 |-  ( A  e.  ( B  \  { C }
 )  ->  A  =/=  C )
 
Theoremneldifsn 3762  A is not in  ( B 
\  { A }
). (Contributed by David Moews, 1-May-2017.)
 |- 
 -.  A  e.  ( B  \  { A }
 )
 
Theoremneldifsnd 3763  A is not in  ( B 
\  { A }
). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
 
Theoremrexdifsn 3764 Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
 |-  ( E. x  e.  ( A  \  { B } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )
 
Theoremsnssb 3765 Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
 |-  ( { A }  C_  B  <->  ( A  e.  _V 
 ->  A  e.  B ) )
 
Theoremsnssg 3766 The singleton formed on a set is included in a class if and only if the set is an element of that class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
 
Theoremsnss 3767 The singleton of an element of a class is a subset of the class (inference form of snssg 3766). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  C_  B )
 
TheoremsnssgOLD 3768 Obsolete version of snssgOLD 3768 as of 1-Jan-2025. (Contributed by NM, 22-Jul-2001.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
 
Theoremdifsn 3769 An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( -.  A  e.  B  ->  ( B  \  { A } )  =  B )
 
Theoremdifprsnss 3770 Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( { A ,  B }  \  { A } )  C_  { B }
 
Theoremdifprsn1 3771 Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
 |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B } )
 
Theoremdifprsn2 3772 Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
 |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A } )
 
Theoremdiftpsn3 3773 Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
 |-  ( ( A  =/=  C 
 /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
 
Theoremdifpr 3774 Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
 |-  ( A  \  { B ,  C }
 )  =  ( ( A  \  { B } )  \  { C } )
 
Theoremdifsnb 3775  ( B  \  { A } ) equals  B if and only if 
A is not a member of  B. Generalization of difsn 3769. (Contributed by David Moews, 1-May-2017.)
 |-  ( -.  A  e.  B 
 <->  ( B  \  { A } )  =  B )
 
Theoremsnssi 3776 The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  B  ->  { A }  C_  B )
 
Theoremsnssd 3777 The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  { A }  C_  B )
 
Theoremdifsnss 3778 If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6583. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( B  e.  A  ->  ( ( A  \  { B } )  u. 
 { B } )  C_  A )
 
Theorempw0 3779 Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 ~P (/)  =  { (/) }
 
Theoremsnsspr1 3780 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
 |- 
 { A }  C_  { A ,  B }
 
Theoremsnsspr2 3781 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
 |- 
 { B }  C_  { A ,  B }
 
Theoremsnsstp1 3782 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { A }  C_  { A ,  B ,  C }
 
Theoremsnsstp2 3783 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { B }  C_  { A ,  B ,  C }
 
Theoremsnsstp3 3784 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { C }  C_  { A ,  B ,  C }
 
Theoremprsstp12 3785 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { A ,  B }  C_  { A ,  B ,  C }
 
Theoremprsstp13 3786 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { A ,  C }  C_  { A ,  B ,  C }
 
Theoremprsstp23 3787 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { B ,  C }  C_  { A ,  B ,  C }
 
Theoremprss 3788 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  C  /\  B  e.  C ) 
 <->  { A ,  B }  C_  C )
 
Theoremprssg 3789 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C ) )
 
Theoremprssi 3790 A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
 |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
 
Theoremprssd 3791 Deduction version of prssi 3790: A pair of elements of a class is a subset of the class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  C )   =>    |-  ( ph  ->  { A ,  B }  C_  C )
 
Theoremprsspwg 3792 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
 
Theoremsssnr 3793 Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4245. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( ( A  =  (/) 
 \/  A  =  { B } )  ->  A  C_ 
 { B } )
 
Theoremsssnm 3794* The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A  C_  { B }  <->  A  =  { B }
 ) )
 
Theoremeqsnm 3795* Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A  =  { B } 
 <-> 
 A. x  e.  A  x  =  B )
 )
 
Theoremssprr 3796 The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) )  ->  A  C_  { B ,  C } )
 
Theoremsstpr 3797 The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) )  \/  ( ( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
 )
 
Theoremtpss 3798 A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
 
Theoremtpssi 3799 A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
 |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D ) 
 ->  { A ,  B ,  C }  C_  D )
 
Theoremsneqr 3800 If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( { A }  =  { B }  ->  A  =  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15887
  Copyright terms: Public domain < Previous  Next >