HomeHome Intuitionistic Logic Explorer
Theorem List (p. 38 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3701-3800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsnmg 3701* The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( A  e.  V  ->  E. x  x  e. 
 { A } )
 
Theoremsnnz 3702 The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A }  =/= 
 (/)
 
Theoremsnm 3703* The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  A  e.  _V   =>    |-  E. x  x  e.  { A }
 
Theoremprmg 3704* A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( A  e.  V  ->  E. x  x  e. 
 { A ,  B } )
 
Theoremprnz 3705 A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A ,  B }  =/=  (/)
 
Theoremprm 3706* A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  A  e.  _V   =>    |-  E. x  x  e.  { A ,  B }
 
Theoremprnzg 3707 A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.)
 |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
 
Theoremtpnz 3708 A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
 |-  A  e.  _V   =>    |-  { A ,  B ,  C }  =/= 
 (/)
 
Theoremsnss 3709 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  C_  B )
 
Theoremeldifsn 3710 Membership in a set with an element removed. (Contributed by NM, 10-Oct-2007.)
 |-  ( A  e.  ( B  \  { C }
 ) 
 <->  ( A  e.  B  /\  A  =/=  C ) )
 
Theoremssdifsn 3711 Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
 |-  ( A  C_  ( B  \  { C }
 ) 
 <->  ( A  C_  B  /\  -.  C  e.  A ) )
 
Theoremeldifsni 3712 Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
 |-  ( A  e.  ( B  \  { C }
 )  ->  A  =/=  C )
 
Theoremneldifsn 3713  A is not in  ( B 
\  { A }
). (Contributed by David Moews, 1-May-2017.)
 |- 
 -.  A  e.  ( B  \  { A }
 )
 
Theoremneldifsnd 3714  A is not in  ( B 
\  { A }
). Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  -.  A  e.  ( B  \  { A } ) )
 
Theoremrexdifsn 3715 Restricted existential quantification over a set with an element removed. (Contributed by NM, 4-Feb-2015.)
 |-  ( E. x  e.  ( A  \  { B } ) ph  <->  E. x  e.  A  ( x  =/=  B  /\  ph ) )
 
Theoremsnssg 3716 The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 22-Jul-2001.)
 |-  ( A  e.  V  ->  ( A  e.  B  <->  { A }  C_  B ) )
 
Theoremdifsn 3717 An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( -.  A  e.  B  ->  ( B  \  { A } )  =  B )
 
Theoremdifprsnss 3718 Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( { A ,  B }  \  { A } )  C_  { B }
 
Theoremdifprsn1 3719 Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
 |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B } )
 
Theoremdifprsn2 3720 Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
 |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A } )
 
Theoremdiftpsn3 3721 Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
 |-  ( ( A  =/=  C 
 /\  B  =/=  C )  ->  ( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
 
Theoremdifpr 3722 Removing two elements as pair of elements corresponds to removing each of the two elements as singletons. (Contributed by Alexander van der Vekens, 13-Jul-2018.)
 |-  ( A  \  { B ,  C }
 )  =  ( ( A  \  { B } )  \  { C } )
 
Theoremdifsnb 3723  ( B  \  { A } ) equals  B if and only if 
A is not a member of  B. Generalization of difsn 3717. (Contributed by David Moews, 1-May-2017.)
 |-  ( -.  A  e.  B 
 <->  ( B  \  { A } )  =  B )
 
Theoremsnssi 3724 The singleton of an element of a class is a subset of the class. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  B  ->  { A }  C_  B )
 
Theoremsnssd 3725 The singleton of an element of a class is a subset of the class (deduction form). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  { A }  C_  B )
 
Theoremdifsnss 3726 If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6486. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( B  e.  A  ->  ( ( A  \  { B } )  u. 
 { B } )  C_  A )
 
Theorempw0 3727 Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 ~P (/)  =  { (/) }
 
Theoremsnsspr1 3728 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 27-Aug-2004.)
 |- 
 { A }  C_  { A ,  B }
 
Theoremsnsspr2 3729 A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
 |- 
 { B }  C_  { A ,  B }
 
Theoremsnsstp1 3730 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { A }  C_  { A ,  B ,  C }
 
Theoremsnsstp2 3731 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { B }  C_  { A ,  B ,  C }
 
Theoremsnsstp3 3732 A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
 |- 
 { C }  C_  { A ,  B ,  C }
 
Theoremprsstp12 3733 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { A ,  B }  C_  { A ,  B ,  C }
 
Theoremprsstp13 3734 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { A ,  C }  C_  { A ,  B ,  C }
 
Theoremprsstp23 3735 A pair is a subset of an unordered triple containing its members. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |- 
 { B ,  C }  C_  { A ,  B ,  C }
 
Theoremprss 3736 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( ( A  e.  C  /\  B  e.  C ) 
 <->  { A ,  B }  C_  C )
 
Theoremprssg 3737 A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C ) )
 
Theoremprssi 3738 A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
 |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
 
Theoremprsspwg 3739 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by Thierry Arnoux, 3-Oct-2016.) (Revised by NM, 18-Jan-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) ) )
 
Theoremsssnr 3740 Empty set and the singleton itself are subsets of a singleton. Concerning the converse, see exmidsssn 4188. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( ( A  =  (/) 
 \/  A  =  { B } )  ->  A  C_ 
 { B } )
 
Theoremsssnm 3741* The inhabited subset of a singleton. (Contributed by Jim Kingdon, 10-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A  C_  { B }  <->  A  =  { B }
 ) )
 
Theoremeqsnm 3742* Two ways to express that an inhabited set equals a singleton. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( E. x  x  e.  A  ->  ( A  =  { B } 
 <-> 
 A. x  e.  A  x  =  B )
 )
 
Theoremssprr 3743 The subsets of a pair. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) )  ->  A  C_  { B ,  C } )
 
Theoremsstpr 3744 The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
 |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C } ) )  \/  ( ( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
 )
 
Theoremtpss 3745 A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  (
 ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
 
Theoremtpssi 3746 A triple of elements of a class is a subset of the class. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
 |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D ) 
 ->  { A ,  B ,  C }  C_  D )
 
Theoremsneqr 3747 If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
 |-  A  e.  _V   =>    |-  ( { A }  =  { B }  ->  A  =  B )
 
Theoremsnsssn 3748 If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
 |-  A  e.  _V   =>    |-  ( { A }  C_  { B }  ->  A  =  B )
 
Theoremsneqrg 3749 Closed form of sneqr 3747. (Contributed by Scott Fenton, 1-Apr-2011.)
 |-  ( A  e.  V  ->  ( { A }  =  { B }  ->  A  =  B ) )
 
Theoremsneqbg 3750 Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.)
 |-  ( A  e.  V  ->  ( { A }  =  { B }  <->  A  =  B ) )
 
Theoremsnsspw 3751 The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
 |- 
 { A }  C_  ~P A
 
Theoremprsspw 3752 An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A ,  B }  C_  ~P C  <->  ( A  C_  C  /\  B  C_  C ) )
 
Theorempreqr1g 3753 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3755. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )
 
Theorempreqr2g 3754 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the second elements are equal. Closed form of preqr2 3756. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( ( A  e.  _V 
 /\  B  e.  _V )  ->  ( { C ,  A }  =  { C ,  B }  ->  A  =  B ) )
 
Theorempreqr1 3755 Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
 
Theorempreqr2 3756 Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( { C ,  A }  =  { C ,  B }  ->  A  =  B )
 
Theorempreq12b 3757 Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( { A ,  B }  =  { C ,  D }  <->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) )
 
Theoremprel12 3758 Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( -.  A  =  B  ->  ( { A ,  B }  =  { C ,  D }  <->  ( A  e.  { C ,  D }  /\  B  e.  { C ,  D } ) ) )
 
Theoremopthpr 3759 A way to represent ordered pairs using unordered pairs with distinct members. (Contributed by NM, 27-Mar-2007.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( A  =/=  D  ->  ( { A ,  B }  =  { C ,  D }  <->  ( A  =  C  /\  B  =  D )
 ) )
 
Theorempreq12bg 3760 Closed form of preq12b 3757. (Contributed by Scott Fenton, 28-Mar-2014.)
 |-  ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
 )  ->  ( { A ,  B }  =  { C ,  D } 
 <->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) ) )
 
Theoremprneimg 3761 Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
 |-  ( ( ( A  e.  U  /\  B  e.  V )  /\  ( C  e.  X  /\  D  e.  Y )
 )  ->  ( (
 ( A  =/=  C  /\  A  =/=  D )  \/  ( B  =/=  C 
 /\  B  =/=  D ) )  ->  { A ,  B }  =/=  { C ,  D }
 ) )
 
Theorempreqsn 3762 Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )
 
Theoremdfopg 3763 Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  <. A ,  B >.  =  { { A } ,  { A ,  B } } )
 
Theoremdfop 3764 Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  =  { { A } ,  { A ,  B } }
 
Theoremopeq1 3765 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  =  B  -> 
 <. A ,  C >.  = 
 <. B ,  C >. )
 
Theoremopeq2 3766 Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  =  B  -> 
 <. C ,  A >.  = 
 <. C ,  B >. )
 
Theoremopeq12 3767 Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  <. A ,  B >.  =  <. C ,  D >. )
 
Theoremopeq1i 3768 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
 |-  A  =  B   =>    |-  <. A ,  C >.  =  <. B ,  C >.
 
Theoremopeq2i 3769 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
 |-  A  =  B   =>    |-  <. C ,  A >.  =  <. C ,  B >.
 
Theoremopeq12i 3770 Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |- 
 <. A ,  C >.  = 
 <. B ,  D >.
 
Theoremopeq1d 3771 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <. A ,  C >.  =  <. B ,  C >. )
 
Theoremopeq2d 3772 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <. C ,  A >.  =  <. C ,  B >. )
 
Theoremopeq12d 3773 Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  <. A ,  C >.  = 
 <. B ,  D >. )
 
Theoremoteq1 3774 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
 |-  ( A  =  B  -> 
 <. A ,  C ,  D >.  =  <. B ,  C ,  D >. )
 
Theoremoteq2 3775 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
 |-  ( A  =  B  -> 
 <. C ,  A ,  D >.  =  <. C ,  B ,  D >. )
 
Theoremoteq3 3776 Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
 |-  ( A  =  B  -> 
 <. C ,  D ,  A >.  =  <. C ,  D ,  B >. )
 
Theoremoteq1d 3777 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <. A ,  C ,  D >.  = 
 <. B ,  C ,  D >. )
 
Theoremoteq2d 3778 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <. C ,  A ,  D >.  = 
 <. C ,  B ,  D >. )
 
Theoremoteq3d 3779 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <. C ,  D ,  A >.  = 
 <. C ,  D ,  B >. )
 
Theoremoteq123d 3780 Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   &    |-  ( ph  ->  E  =  F )   =>    |-  ( ph  ->  <. A ,  C ,  E >.  = 
 <. B ,  D ,  F >. )
 
Theoremnfop 3781 Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x <. A ,  B >.
 
Theoremnfopd 3782 Deduction version of bound-variable hypothesis builder nfop 3781. This shows how the deduction version of a not-free theorem such as nfop 3781 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x <. A ,  B >. )
 
Theoremopid 3783 The ordered pair  <. A ,  A >. in Kuratowski's representation. (Contributed by FL, 28-Dec-2011.)
 |-  A  e.  _V   =>    |-  <. A ,  A >.  =  { { A } }
 
Theoremralunsn 3784* Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
 |-  ( x  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps )
 ) )
 
Theorem2ralunsn 3785* Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( x  =  B  ->  ( ph  <->  ch ) )   &    |-  (
 y  =  B  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  =  B  ->  ( ps  <->  th ) )   =>    |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) A. y  e.  ( A  u.  { B } ) ph  <->  ( ( A. x  e.  A  A. y  e.  A  ph  /\  A. x  e.  A  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) ) )
 
Theoremopprc 3786 Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  <. A ,  B >.  =  (/) )
 
Theoremopprc1 3787 Expansion of an ordered pair when the first member is a proper class. See also opprc 3786. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( -.  A  e.  _V 
 ->  <. A ,  B >.  =  (/) )
 
Theoremopprc2 3788 Expansion of an ordered pair when the second member is a proper class. See also opprc 3786. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( -.  B  e.  _V 
 ->  <. A ,  B >.  =  (/) )
 
Theoremoprcl 3789 If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( C  e.  <. A ,  B >.  ->  ( A  e.  _V  /\  B  e.  _V ) )
 
Theorempwsnss 3790 The power set of a singleton. (Contributed by Jim Kingdon, 12-Aug-2018.)
 |- 
 { (/) ,  { A } }  C_  ~P { A }
 
Theorempwpw0ss 3791 Compute the power set of the power set of the empty set. (See pw0 3727 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
 |- 
 { (/) ,  { (/) } }  C_ 
 ~P { (/) }
 
Theorempwprss 3792 The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
 |-  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  C_  ~P { A ,  B }
 
Theorempwtpss 3793 The power set of an unordered triple. (Contributed by Jim Kingdon, 13-Aug-2018.)
 |-  ( ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  u.  ( { { C } ,  { A ,  C } }  u.  { { B ,  C } ,  { A ,  B ,  C } } ) ) 
 C_  ~P { A ,  B ,  C }
 
Theorempwpwpw0ss 3794 Compute the power set of the power set of the power set of the empty set. (See also pw0 3727 and pwpw0ss 3791.) (Contributed by Jim Kingdon, 13-Aug-2018.)
 |-  ( { (/) ,  { (/)
 } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } )  C_  ~P { (/)
 ,  { (/) } }
 
Theorempwv 3795 The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
 |- 
 ~P _V  =  _V
 
2.1.18  The union of a class
 
Syntaxcuni 3796 Extend class notation to include the union of a class. Read: "union (of)  A".
 class  U. A
 
Definitiondf-uni 3797* Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example,  U. { { 1 ,  3 } ,  { 1 ,  8 } }  =  {
1 ,  3 ,  8 }. This is similar to the union of two classes df-un 3125. (Contributed by NM, 23-Aug-1993.)
 |- 
 U. A  =  { x  |  E. y
 ( x  e.  y  /\  y  e.  A ) }
 
Theoremdfuni2 3798* Alternate definition of class union. (Contributed by NM, 28-Jun-1998.)
 |- 
 U. A  =  { x  |  E. y  e.  A  x  e.  y }
 
Theoremeluni 3799* Membership in class union. (Contributed by NM, 22-May-1994.)
 |-  ( A  e.  U. B 
 <-> 
 E. x ( A  e.  x  /\  x  e.  B ) )
 
Theoremeluni2 3800* Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
 |-  ( A  e.  U. B 
 <-> 
 E. x  e.  B  A  e.  x )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >