ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw Unicode version

Theorem snsspw 3794
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw  |-  { A }  C_  ~P A

Proof of Theorem snsspw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqimss 3237 . . 3  |-  ( x  =  A  ->  x  C_  A )
2 velsn 3639 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
3 df-pw 3607 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
43abeq2i 2307 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
51, 2, 43imtr4i 201 . 2  |-  ( x  e.  { A }  ->  x  e.  ~P A
)
65ssriv 3187 1  |-  { A }  C_  ~P A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167    C_ wss 3157   ~Pcpw 3605   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628
This theorem is referenced by:  snexg  4217
  Copyright terms: Public domain W3C validator