ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspw Unicode version

Theorem snsspw 3790
Description: The singleton of a class is a subset of its power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snsspw  |-  { A }  C_  ~P A

Proof of Theorem snsspw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqimss 3233 . . 3  |-  ( x  =  A  ->  x  C_  A )
2 velsn 3635 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
3 df-pw 3603 . . . 4  |-  ~P A  =  { x  |  x 
C_  A }
43abeq2i 2304 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
51, 2, 43imtr4i 201 . 2  |-  ( x  e.  { A }  ->  x  e.  ~P A
)
65ssriv 3183 1  |-  { A }  C_  ~P A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164    C_ wss 3153   ~Pcpw 3601   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624
This theorem is referenced by:  snexg  4213
  Copyright terms: Public domain W3C validator