ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpwfidom Unicode version

Theorem infpwfidom 7187
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption 
( ~P A  i^i  Fin )  e.  _V because this theorem also implies that  A is a set if  ~P A  i^i  Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
infpwfidom  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )

Proof of Theorem infpwfidom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snelpwi 4206 . . 3  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
2 snfig 6804 . . 3  |-  ( x  e.  A  ->  { x }  e.  Fin )
31, 2elind 3318 . 2  |-  ( x  e.  A  ->  { x }  e.  ( ~P A  i^i  Fin ) )
4 sneqbg 3759 . . 3  |-  ( x  e.  A  ->  ( { x }  =  { y }  <->  x  =  y ) )
54adantr 276 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( { x }  =  { y }  <->  x  =  y ) )
63, 5dom2 6765 1  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735    i^i cin 3126   ~Pcpw 3572   {csn 3589   class class class wbr 3998    ~<_ cdom 6729   Fincfn 6730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1o 6407  df-en 6731  df-dom 6732  df-fin 6733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator