ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infpwfidom Unicode version

Theorem infpwfidom 7154
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption 
( ~P A  i^i  Fin )  e.  _V because this theorem also implies that  A is a set if  ~P A  i^i  Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
infpwfidom  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )

Proof of Theorem infpwfidom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snelpwi 4190 . . 3  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
2 snfig 6780 . . 3  |-  ( x  e.  A  ->  { x }  e.  Fin )
31, 2elind 3307 . 2  |-  ( x  e.  A  ->  { x }  e.  ( ~P A  i^i  Fin ) )
4 sneqbg 3743 . . 3  |-  ( x  e.  A  ->  ( { x }  =  { y }  <->  x  =  y ) )
54adantr 274 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( { x }  =  { y }  <->  x  =  y ) )
63, 5dom2 6741 1  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115   ~Pcpw 3559   {csn 3576   class class class wbr 3982    ~<_ cdom 6705   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-en 6707  df-dom 6708  df-fin 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator