Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > soss | Unicode version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 4253 | . . 3 | |
2 | ssel 3118 | . . . . . . . 8 | |
3 | ssel 3118 | . . . . . . . 8 | |
4 | ssel 3118 | . . . . . . . 8 | |
5 | 2, 3, 4 | 3anim123d 1298 | . . . . . . 7 |
6 | 5 | imim1d 75 | . . . . . 6 |
7 | 6 | 2alimdv 1858 | . . . . 5 |
8 | 7 | alimdv 1856 | . . . 4 |
9 | r3al 2498 | . . . 4 | |
10 | r3al 2498 | . . . 4 | |
11 | 8, 9, 10 | 3imtr4g 204 | . . 3 |
12 | 1, 11 | anim12d 333 | . 2 |
13 | df-iso 4252 | . 2 | |
14 | df-iso 4252 | . 2 | |
15 | 12, 13, 14 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 963 wal 1330 wcel 2125 wral 2432 wss 3098 class class class wbr 3961 wpo 4249 wor 4250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-in 3104 df-ss 3111 df-po 4251 df-iso 4252 |
This theorem is referenced by: soeq2 4271 |
Copyright terms: Public domain | W3C validator |