ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soss Unicode version

Theorem soss 4132
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
soss  |-  ( A 
C_  B  ->  ( R  Or  B  ->  R  Or  A ) )

Proof of Theorem soss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 4116 . . 3  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
2 ssel 3017 . . . . . . . 8  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
3 ssel 3017 . . . . . . . 8  |-  ( A 
C_  B  ->  (
y  e.  A  -> 
y  e.  B ) )
4 ssel 3017 . . . . . . . 8  |-  ( A 
C_  B  ->  (
z  e.  A  -> 
z  e.  B ) )
52, 3, 43anim123d 1255 . . . . . . 7  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) ) )
65imim1d 74 . . . . . 6  |-  ( A 
C_  B  ->  (
( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) )  -> 
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) ) )
762alimdv 1809 . . . . 5  |-  ( A 
C_  B  ->  ( A. y A. z ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) )  ->  A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) ) )
87alimdv 1807 . . . 4  |-  ( A 
C_  B  ->  ( A. x A. y A. z ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) )  ->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) ) )
9 r3al 2420 . . . 4  |-  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. x A. y A. z ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
10 r3al 2420 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
118, 9, 103imtr4g 203 . . 3  |-  ( A 
C_  B  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x R y  ->  ( x R z  \/  z R y ) )  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
121, 11anim12d 328 . 2  |-  ( A 
C_  B  ->  (
( R  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x R y  ->  ( x R z  \/  z R y ) ) )  ->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) ) ) )
13 df-iso 4115 . 2  |-  ( R  Or  B  <->  ( R  Po  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
14 df-iso 4115 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
1512, 13, 143imtr4g 203 1  |-  ( A 
C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664    /\ w3a 924   A.wal 1287    e. wcel 1438   A.wral 2359    C_ wss 2997   class class class wbr 3837    Po wpo 4112    Or wor 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-in 3003  df-ss 3010  df-po 4114  df-iso 4115
This theorem is referenced by:  soeq2  4134
  Copyright terms: Public domain W3C validator