| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > soss | Unicode version | ||
| Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| soss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss 4343 |
. . 3
| |
| 2 | ssel 3186 |
. . . . . . . 8
| |
| 3 | ssel 3186 |
. . . . . . . 8
| |
| 4 | ssel 3186 |
. . . . . . . 8
| |
| 5 | 2, 3, 4 | 3anim123d 1331 |
. . . . . . 7
|
| 6 | 5 | imim1d 75 |
. . . . . 6
|
| 7 | 6 | 2alimdv 1903 |
. . . . 5
|
| 8 | 7 | alimdv 1901 |
. . . 4
|
| 9 | r3al 2549 |
. . . 4
| |
| 10 | r3al 2549 |
. . . 4
| |
| 11 | 8, 9, 10 | 3imtr4g 205 |
. . 3
|
| 12 | 1, 11 | anim12d 335 |
. 2
|
| 13 | df-iso 4342 |
. 2
| |
| 14 | df-iso 4342 |
. 2
| |
| 15 | 12, 13, 14 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-in 3171 df-ss 3178 df-po 4341 df-iso 4342 |
| This theorem is referenced by: soeq2 4361 |
| Copyright terms: Public domain | W3C validator |