Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > soss | Unicode version |
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
soss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poss 4283 | . . 3 | |
2 | ssel 3141 | . . . . . . . 8 | |
3 | ssel 3141 | . . . . . . . 8 | |
4 | ssel 3141 | . . . . . . . 8 | |
5 | 2, 3, 4 | 3anim123d 1314 | . . . . . . 7 |
6 | 5 | imim1d 75 | . . . . . 6 |
7 | 6 | 2alimdv 1874 | . . . . 5 |
8 | 7 | alimdv 1872 | . . . 4 |
9 | r3al 2514 | . . . 4 | |
10 | r3al 2514 | . . . 4 | |
11 | 8, 9, 10 | 3imtr4g 204 | . . 3 |
12 | 1, 11 | anim12d 333 | . 2 |
13 | df-iso 4282 | . 2 | |
14 | df-iso 4282 | . 2 | |
15 | 12, 13, 14 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 w3a 973 wal 1346 wcel 2141 wral 2448 wss 3121 class class class wbr 3989 wpo 4279 wor 4280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-in 3127 df-ss 3134 df-po 4281 df-iso 4282 |
This theorem is referenced by: soeq2 4301 |
Copyright terms: Public domain | W3C validator |