ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so3nr Unicode version

Theorem so3nr 4368
Description: A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so3nr  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )

Proof of Theorem so3nr
StepHypRef Expression
1 sopo 4359 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 po3nr 4356 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
31, 2sylan 283 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2175   class class class wbr 4043    Po wpo 4340    Or wor 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-po 4342  df-iso 4343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator