| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1398 anxordi 1419 sbidm 1873 reurex 2723 eqimss 3246 eldifi 3294 elinel1 3358 inss1 3392 sopo 4359 wefr 4404 ordtr 4424 opelxp1 4708 relop 4827 funmo 5285 funrel 5287 funinsn 5322 fnfun 5370 ffn 5424 f1f 5480 f1of1 5520 f1ofo 5528 isof1o 5875 eqopi 6257 1st2nd2 6260 reldmtpos 6338 swoer 6647 ecopover 6719 ecopoverg 6722 fnfi 7037 casef 7189 nninff 7223 lpowlpo 7269 dfplpq2 7466 enq0ref 7545 cauappcvgprlemopl 7758 cauappcvgprlemdisj 7763 caucvgprlemopl 7781 caucvgprlemdisj 7786 caucvgprprlemopl 7809 caucvgprprlemopu 7811 caucvgprprlemdisj 7814 peano1nnnn 7964 axrnegex 7991 ltxrlt 8137 1nn 9046 zre 9375 nnssz 9388 ixxss1 10025 ixxss2 10026 ixxss12 10027 iccss2 10065 rge0ssre 10098 elfzuz 10142 uzdisj 10214 nn0disj 10259 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 0wrd0 11018 modfsummodlemstep 11739 mertenslem2 11818 prmnn 12403 prmuz2 12424 oddpwdc 12467 sqpweven 12468 2sqpwodd 12469 phimullem 12518 hashgcdlem 12531 1arith 12661 ctinfom 12770 ctinf 12772 sgrpmgm 13210 mndsgrp 13224 grpmnd 13310 nsgsubg 13512 ghmgrp1 13552 ghmgrp2 13553 ablgrp 13596 cmnmnd 13608 crngring 13741 rimrhm 13904 subrgring 13957 subrgrcl 13959 rhmpropd 13987 domnnzr 14003 2idlelbas 14249 rng2idlsubgsubrng 14253 2idlcpblrng 14256 2idlcpbl 14257 qusrhm 14261 psr1clfi 14421 topontop 14457 tpstop 14478 cntop1 14644 cntop2 14645 hmeocn 14748 isxmet2d 14791 metxmet 14798 xmstps 14900 msxms 14901 xmsxmet 14903 msmet 14904 bdxmet 14944 ivthinclemlr 15080 ivthinclemur 15082 mpodvdsmulf1o 15433 bj-indint 15829 bj-inf2vnlem2 15869 peano4nninf 15905 |
| Copyright terms: Public domain | W3C validator |