| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 948 3simpa 997 xoror 1399 anxordi 1420 sbidm 1875 reurex 2725 eqimss 3251 eldifi 3299 elinel1 3363 inss1 3397 sopo 4373 wefr 4418 ordtr 4438 opelxp1 4722 relop 4841 ssrelrn 4883 funmo 5300 funrel 5302 funinsn 5337 fnfun 5385 ffn 5440 f1f 5498 f1of1 5538 f1ofo 5546 isof1o 5894 eqopi 6276 1st2nd2 6279 reldmtpos 6357 swoer 6666 ecopover 6738 ecopoverg 6741 fnfi 7059 casef 7211 nninff 7245 lpowlpo 7291 dfplpq2 7497 enq0ref 7576 cauappcvgprlemopl 7789 cauappcvgprlemdisj 7794 caucvgprlemopl 7812 caucvgprlemdisj 7817 caucvgprprlemopl 7840 caucvgprprlemopu 7842 caucvgprprlemdisj 7845 peano1nnnn 7995 axrnegex 8022 ltxrlt 8168 1nn 9077 zre 9406 nnssz 9419 ixxss1 10056 ixxss2 10057 ixxss12 10058 iccss2 10096 rge0ssre 10129 elfzuz 10173 uzdisj 10245 nn0disj 10290 frecuzrdgtcl 10589 frecuzrdgfunlem 10596 0wrd0 11052 modfsummodlemstep 11853 mertenslem2 11932 prmnn 12517 prmuz2 12538 oddpwdc 12581 sqpweven 12582 2sqpwodd 12583 phimullem 12632 hashgcdlem 12645 1arith 12775 ctinfom 12884 ctinf 12886 sgrpmgm 13324 mndsgrp 13338 grpmnd 13424 nsgsubg 13626 ghmgrp1 13666 ghmgrp2 13667 ablgrp 13710 cmnmnd 13722 crngring 13855 rimrhm 14018 subrgring 14071 subrgrcl 14073 rhmpropd 14101 domnnzr 14117 2idlelbas 14363 rng2idlsubgsubrng 14367 2idlcpblrng 14370 2idlcpbl 14371 qusrhm 14375 psr1clfi 14535 topontop 14571 tpstop 14592 cntop1 14758 cntop2 14759 hmeocn 14862 isxmet2d 14905 metxmet 14912 xmstps 15014 msxms 15015 xmsxmet 15017 msmet 15018 bdxmet 15058 ivthinclemlr 15194 ivthinclemur 15196 mpodvdsmulf1o 15547 uhgr0vb 15765 bj-indint 16036 bj-inf2vnlem2 16076 peano4nninf 16115 |
| Copyright terms: Public domain | W3C validator |