![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simplbi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simpld 112 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1862 reurex 2704 eqimss 3224 eldifi 3272 elinel1 3336 inss1 3370 sopo 4328 wefr 4373 ordtr 4393 opelxp1 4675 relop 4792 funmo 5246 funrel 5248 funinsn 5280 fnfun 5328 ffn 5380 f1f 5436 f1of1 5475 f1ofo 5483 isof1o 5824 eqopi 6191 1st2nd2 6194 reldmtpos 6272 swoer 6581 ecopover 6651 ecopoverg 6654 fnfi 6954 casef 7105 nninff 7139 lpowlpo 7184 dfplpq2 7371 enq0ref 7450 cauappcvgprlemopl 7663 cauappcvgprlemdisj 7668 caucvgprlemopl 7686 caucvgprlemdisj 7691 caucvgprprlemopl 7714 caucvgprprlemopu 7716 caucvgprprlemdisj 7719 peano1nnnn 7869 axrnegex 7896 ltxrlt 8041 1nn 8948 zre 9275 nnssz 9288 ixxss1 9922 ixxss2 9923 ixxss12 9924 iccss2 9962 rge0ssre 9995 elfzuz 10039 uzdisj 10111 nn0disj 10156 frecuzrdgtcl 10430 frecuzrdgfunlem 10437 modfsummodlemstep 11483 mertenslem2 11562 prmnn 12128 prmuz2 12149 oddpwdc 12192 sqpweven 12193 2sqpwodd 12194 phimullem 12243 hashgcdlem 12256 1arith 12383 ctinfom 12447 ctinf 12449 sgrpmgm 12836 mndsgrp 12848 grpmnd 12918 nsgsubg 13110 ghmgrp1 13145 ghmgrp2 13146 ablgrp 13189 cmnmnd 13201 crngring 13323 rimrhm 13482 subrgring 13532 subrgrcl 13534 2idlelbas 13792 rng2idlsubgsubrng 13796 2idlcpblrng 13799 2idlcpbl 13800 topontop 13911 tpstop 13932 cntop1 14098 cntop2 14099 hmeocn 14202 isxmet2d 14245 metxmet 14252 xmstps 14354 msxms 14355 xmsxmet 14357 msmet 14358 bdxmet 14398 ivthinclemlr 14512 ivthinclemur 14514 bj-indint 15080 bj-inf2vnlem2 15120 peano4nninf 15153 |
Copyright terms: Public domain | W3C validator |