| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1398 anxordi 1419 sbidm 1873 reurex 2723 eqimss 3246 eldifi 3294 elinel1 3358 inss1 3392 sopo 4359 wefr 4404 ordtr 4424 opelxp1 4708 relop 4827 funmo 5285 funrel 5287 funinsn 5322 fnfun 5370 ffn 5424 f1f 5480 f1of1 5520 f1ofo 5528 isof1o 5875 eqopi 6257 1st2nd2 6260 reldmtpos 6338 swoer 6647 ecopover 6719 ecopoverg 6722 fnfi 7037 casef 7189 nninff 7223 lpowlpo 7269 dfplpq2 7466 enq0ref 7545 cauappcvgprlemopl 7758 cauappcvgprlemdisj 7763 caucvgprlemopl 7781 caucvgprlemdisj 7786 caucvgprprlemopl 7809 caucvgprprlemopu 7811 caucvgprprlemdisj 7814 peano1nnnn 7964 axrnegex 7991 ltxrlt 8137 1nn 9046 zre 9375 nnssz 9388 ixxss1 10025 ixxss2 10026 ixxss12 10027 iccss2 10065 rge0ssre 10098 elfzuz 10142 uzdisj 10214 nn0disj 10259 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 0wrd0 11018 modfsummodlemstep 11710 mertenslem2 11789 prmnn 12374 prmuz2 12395 oddpwdc 12438 sqpweven 12439 2sqpwodd 12440 phimullem 12489 hashgcdlem 12502 1arith 12632 ctinfom 12741 ctinf 12743 sgrpmgm 13181 mndsgrp 13195 grpmnd 13281 nsgsubg 13483 ghmgrp1 13523 ghmgrp2 13524 ablgrp 13567 cmnmnd 13579 crngring 13712 rimrhm 13875 subrgring 13928 subrgrcl 13930 rhmpropd 13958 domnnzr 13974 2idlelbas 14220 rng2idlsubgsubrng 14224 2idlcpblrng 14227 2idlcpbl 14228 qusrhm 14232 psr1clfi 14392 topontop 14428 tpstop 14449 cntop1 14615 cntop2 14616 hmeocn 14719 isxmet2d 14762 metxmet 14769 xmstps 14871 msxms 14872 xmsxmet 14874 msmet 14875 bdxmet 14915 ivthinclemlr 15051 ivthinclemur 15053 mpodvdsmulf1o 15404 bj-indint 15800 bj-inf2vnlem2 15840 peano4nninf 15876 |
| Copyright terms: Public domain | W3C validator |