| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1865 reurex 2715 eqimss 3238 eldifi 3286 elinel1 3350 inss1 3384 sopo 4349 wefr 4394 ordtr 4414 opelxp1 4698 relop 4817 funmo 5274 funrel 5276 funinsn 5308 fnfun 5356 ffn 5410 f1f 5466 f1of1 5506 f1ofo 5514 isof1o 5857 eqopi 6239 1st2nd2 6242 reldmtpos 6320 swoer 6629 ecopover 6701 ecopoverg 6704 fnfi 7011 casef 7163 nninff 7197 lpowlpo 7243 dfplpq2 7440 enq0ref 7519 cauappcvgprlemopl 7732 cauappcvgprlemdisj 7737 caucvgprlemopl 7755 caucvgprlemdisj 7760 caucvgprprlemopl 7783 caucvgprprlemopu 7785 caucvgprprlemdisj 7788 peano1nnnn 7938 axrnegex 7965 ltxrlt 8111 1nn 9020 zre 9349 nnssz 9362 ixxss1 9998 ixxss2 9999 ixxss12 10000 iccss2 10038 rge0ssre 10071 elfzuz 10115 uzdisj 10187 nn0disj 10232 frecuzrdgtcl 10523 frecuzrdgfunlem 10530 0wrd0 10980 modfsummodlemstep 11641 mertenslem2 11720 prmnn 12305 prmuz2 12326 oddpwdc 12369 sqpweven 12370 2sqpwodd 12371 phimullem 12420 hashgcdlem 12433 1arith 12563 ctinfom 12672 ctinf 12674 sgrpmgm 13111 mndsgrp 13125 grpmnd 13211 nsgsubg 13413 ghmgrp1 13453 ghmgrp2 13454 ablgrp 13497 cmnmnd 13509 crngring 13642 rimrhm 13805 subrgring 13858 subrgrcl 13860 rhmpropd 13888 domnnzr 13904 2idlelbas 14150 rng2idlsubgsubrng 14154 2idlcpblrng 14157 2idlcpbl 14158 qusrhm 14162 psr1clfi 14322 topontop 14358 tpstop 14379 cntop1 14545 cntop2 14546 hmeocn 14649 isxmet2d 14692 metxmet 14699 xmstps 14801 msxms 14802 xmsxmet 14804 msmet 14805 bdxmet 14845 ivthinclemlr 14981 ivthinclemur 14983 mpodvdsmulf1o 15334 bj-indint 15685 bj-inf2vnlem2 15725 peano4nninf 15761 |
| Copyright terms: Public domain | W3C validator |