| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an3 589 pm5.62dc 951 3simpa 1018 xoror 1421 anxordi 1442 sbidm 1897 reurex 2750 eqimss 3278 eldifi 3326 elinel1 3390 inss1 3424 sopo 4403 wefr 4448 ordtr 4468 opelxp1 4752 relop 4871 ssrelrn 4913 funmo 5332 funrel 5334 funinsn 5369 fnfun 5417 ffn 5472 f1f 5530 f1of1 5570 f1ofo 5578 isof1o 5930 eqopi 6316 1st2nd2 6319 reldmtpos 6397 swoer 6706 ecopover 6778 ecopoverg 6781 fnfi 7099 casef 7251 nninff 7285 lpowlpo 7331 dfplpq2 7537 enq0ref 7616 cauappcvgprlemopl 7829 cauappcvgprlemdisj 7834 caucvgprlemopl 7852 caucvgprlemdisj 7857 caucvgprprlemopl 7880 caucvgprprlemopu 7882 caucvgprprlemdisj 7885 peano1nnnn 8035 axrnegex 8062 ltxrlt 8208 1nn 9117 zre 9446 nnssz 9459 ixxss1 10096 ixxss2 10097 ixxss12 10098 iccss2 10136 rge0ssre 10169 elfzuz 10213 uzdisj 10285 nn0disj 10330 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 0wrd0 11092 modfsummodlemstep 11963 mertenslem2 12042 prmnn 12627 prmuz2 12648 oddpwdc 12691 sqpweven 12692 2sqpwodd 12693 phimullem 12742 hashgcdlem 12755 1arith 12885 ctinfom 12994 ctinf 12996 sgrpmgm 13435 mndsgrp 13449 grpmnd 13535 nsgsubg 13737 ghmgrp1 13777 ghmgrp2 13778 ablgrp 13821 cmnmnd 13833 crngring 13966 rimrhm 14129 subrgring 14182 subrgrcl 14184 rhmpropd 14212 domnnzr 14228 2idlelbas 14474 rng2idlsubgsubrng 14478 2idlcpblrng 14481 2idlcpbl 14482 qusrhm 14486 psr1clfi 14646 topontop 14682 tpstop 14703 cntop1 14869 cntop2 14870 hmeocn 14973 isxmet2d 15016 metxmet 15023 xmstps 15125 msxms 15126 xmsxmet 15128 msmet 15129 bdxmet 15169 ivthinclemlr 15305 ivthinclemur 15307 mpodvdsmulf1o 15658 uhgr0vb 15878 bj-indint 16252 bj-inf2vnlem2 16292 peano4nninf 16331 |
| Copyright terms: Public domain | W3C validator |