![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simplbi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 118 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simpld 110 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.62dc 891 3simpa 940 xoror 1315 anxordi 1336 sbidm 1779 reurex 2580 eqimss 3078 eldifi 3122 elinel1 3186 inss1 3220 sopo 4140 wefr 4185 ordtr 4205 opelxp1 4471 relop 4586 funmo 5030 funrel 5032 funinsn 5063 fnfun 5111 ffn 5161 f1f 5216 f1of1 5252 f1ofo 5260 isof1o 5586 eqopi 5942 1st2nd2 5945 reldmtpos 6018 swoer 6318 ecopover 6388 ecopoverg 6391 fnfi 6644 casef 6777 dfplpq2 6911 enq0ref 6990 cauappcvgprlemopl 7203 cauappcvgprlemdisj 7208 caucvgprlemopl 7226 caucvgprlemdisj 7231 caucvgprprlemopl 7254 caucvgprprlemopu 7256 caucvgprprlemdisj 7259 peano1nnnn 7387 axrnegex 7412 ltxrlt 7550 1nn 8431 zre 8752 nnssz 8765 ixxss1 9320 ixxss2 9321 ixxss12 9322 iccss2 9360 rge0ssre 9393 elfzuz 9434 uzdisj 9503 nn0disj 9545 frecuzrdgtcl 9815 frecuzrdgfunlem 9822 modfsummodlemstep 10847 mertenslem2 10926 prmnn 11366 prmuz2 11386 oddpwdc 11426 sqpweven 11427 2sqpwodd 11428 phimullem 11475 hashgcdlem 11477 topontop 11566 bj-indint 11781 bj-inf2vnlem2 11821 nninff 11849 peano4nninf 11851 |
Copyright terms: Public domain | W3C validator |