| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | Unicode version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 |
|
| Ref | Expression |
|---|---|
| simplbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1865 reurex 2715 eqimss 3238 eldifi 3286 elinel1 3350 inss1 3384 sopo 4349 wefr 4394 ordtr 4414 opelxp1 4698 relop 4817 funmo 5274 funrel 5276 funinsn 5308 fnfun 5356 ffn 5410 f1f 5466 f1of1 5506 f1ofo 5514 isof1o 5857 eqopi 6239 1st2nd2 6242 reldmtpos 6320 swoer 6629 ecopover 6701 ecopoverg 6704 fnfi 7011 casef 7163 nninff 7197 lpowlpo 7243 dfplpq2 7438 enq0ref 7517 cauappcvgprlemopl 7730 cauappcvgprlemdisj 7735 caucvgprlemopl 7753 caucvgprlemdisj 7758 caucvgprprlemopl 7781 caucvgprprlemopu 7783 caucvgprprlemdisj 7786 peano1nnnn 7936 axrnegex 7963 ltxrlt 8109 1nn 9018 zre 9347 nnssz 9360 ixxss1 9996 ixxss2 9997 ixxss12 9998 iccss2 10036 rge0ssre 10069 elfzuz 10113 uzdisj 10185 nn0disj 10230 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 0wrd0 10978 modfsummodlemstep 11639 mertenslem2 11718 prmnn 12303 prmuz2 12324 oddpwdc 12367 sqpweven 12368 2sqpwodd 12369 phimullem 12418 hashgcdlem 12431 1arith 12561 ctinfom 12670 ctinf 12672 sgrpmgm 13109 mndsgrp 13123 grpmnd 13209 nsgsubg 13411 ghmgrp1 13451 ghmgrp2 13452 ablgrp 13495 cmnmnd 13507 crngring 13640 rimrhm 13803 subrgring 13856 subrgrcl 13858 rhmpropd 13886 domnnzr 13902 2idlelbas 14148 rng2idlsubgsubrng 14152 2idlcpblrng 14155 2idlcpbl 14156 qusrhm 14160 psr1clfi 14316 topontop 14334 tpstop 14355 cntop1 14521 cntop2 14522 hmeocn 14625 isxmet2d 14668 metxmet 14675 xmstps 14777 msxms 14778 xmsxmet 14780 msmet 14781 bdxmet 14821 ivthinclemlr 14957 ivthinclemur 14959 mpodvdsmulf1o 15310 bj-indint 15661 bj-inf2vnlem2 15701 peano4nninf 15737 |
| Copyright terms: Public domain | W3C validator |