ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso Unicode version

Definition df-iso 4328
Description: Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Distinct variable groups:    x, y, z, R    x, A, y, z

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 4326 . 2  wff  R  Or  A
41, 2wpo 4325 . . 3  wff  R  Po  A
5 vx . . . . . . . . 9  setvar  x
65cv 1363 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1363 . . . . . . . 8  class  y
96, 8, 2wbr 4029 . . . . . . 7  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1363 . . . . . . . . 9  class  z
126, 11, 2wbr 4029 . . . . . . . 8  wff  x R z
1311, 8, 2wbr 4029 . . . . . . . 8  wff  z R y
1412, 13wo 709 . . . . . . 7  wff  ( x R z  \/  z R y )
159, 14wi 4 . . . . . 6  wff  ( x R y  ->  (
x R z  \/  z R y ) )
1615, 10, 1wral 2472 . . . . 5  wff  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1716, 7, 1wral 2472 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1817, 5, 1wral 2472 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
194, 18wa 104 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )
203, 19wb 105 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfso  4333  sopo  4344  soss  4345  soeq1  4346  issod  4350  sowlin  4351  so0  4357  ordsoexmid  4594  soinxp  4729  sosng  4732  cnvsom  5209  isosolem  5867  ltsopr  7656  ltsosr  7824  ltso  8097  xrltso  9862
  Copyright terms: Public domain W3C validator