ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso Unicode version

Definition df-iso 4297
Description: Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Distinct variable groups:    x, y, z, R    x, A, y, z

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 4295 . 2  wff  R  Or  A
41, 2wpo 4294 . . 3  wff  R  Po  A
5 vx . . . . . . . . 9  setvar  x
65cv 1352 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1352 . . . . . . . 8  class  y
96, 8, 2wbr 4003 . . . . . . 7  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1352 . . . . . . . . 9  class  z
126, 11, 2wbr 4003 . . . . . . . 8  wff  x R z
1311, 8, 2wbr 4003 . . . . . . . 8  wff  z R y
1412, 13wo 708 . . . . . . 7  wff  ( x R z  \/  z R y )
159, 14wi 4 . . . . . 6  wff  ( x R y  ->  (
x R z  \/  z R y ) )
1615, 10, 1wral 2455 . . . . 5  wff  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1716, 7, 1wral 2455 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1817, 5, 1wral 2455 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
194, 18wa 104 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )
203, 19wb 105 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfso  4302  sopo  4313  soss  4314  soeq1  4315  issod  4319  sowlin  4320  so0  4326  ordsoexmid  4561  soinxp  4696  sosng  4699  cnvsom  5172  isosolem  5824  ltsopr  7594  ltsosr  7762  ltso  8034  xrltso  9795
  Copyright terms: Public domain W3C validator