ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso Unicode version

Definition df-iso 4282
Description: Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Distinct variable groups:    x, y, z, R    x, A, y, z

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 4280 . 2  wff  R  Or  A
41, 2wpo 4279 . . 3  wff  R  Po  A
5 vx . . . . . . . . 9  setvar  x
65cv 1347 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1347 . . . . . . . 8  class  y
96, 8, 2wbr 3989 . . . . . . 7  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1347 . . . . . . . . 9  class  z
126, 11, 2wbr 3989 . . . . . . . 8  wff  x R z
1311, 8, 2wbr 3989 . . . . . . . 8  wff  z R y
1412, 13wo 703 . . . . . . 7  wff  ( x R z  \/  z R y )
159, 14wi 4 . . . . . 6  wff  ( x R y  ->  (
x R z  \/  z R y ) )
1615, 10, 1wral 2448 . . . . 5  wff  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1716, 7, 1wral 2448 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1817, 5, 1wral 2448 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
194, 18wa 103 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )
203, 19wb 104 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfso  4287  sopo  4298  soss  4299  soeq1  4300  issod  4304  sowlin  4305  so0  4311  ordsoexmid  4546  soinxp  4681  sosng  4684  cnvsom  5154  isosolem  5803  ltsopr  7558  ltsosr  7726  ltso  7997  xrltso  9753
  Copyright terms: Public domain W3C validator