ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso Unicode version

Definition df-iso 4274
Description: Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Distinct variable groups:    x, y, z, R    x, A, y, z

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 4272 . 2  wff  R  Or  A
41, 2wpo 4271 . . 3  wff  R  Po  A
5 vx . . . . . . . . 9  setvar  x
65cv 1342 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1342 . . . . . . . 8  class  y
96, 8, 2wbr 3981 . . . . . . 7  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1342 . . . . . . . . 9  class  z
126, 11, 2wbr 3981 . . . . . . . 8  wff  x R z
1311, 8, 2wbr 3981 . . . . . . . 8  wff  z R y
1412, 13wo 698 . . . . . . 7  wff  ( x R z  \/  z R y )
159, 14wi 4 . . . . . 6  wff  ( x R y  ->  (
x R z  \/  z R y ) )
1615, 10, 1wral 2443 . . . . 5  wff  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1716, 7, 1wral 2443 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1817, 5, 1wral 2443 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
194, 18wa 103 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )
203, 19wb 104 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfso  4279  sopo  4290  soss  4291  soeq1  4292  issod  4296  sowlin  4297  so0  4303  ordsoexmid  4538  soinxp  4673  sosng  4676  cnvsom  5146  isosolem  5791  ltsopr  7533  ltsosr  7701  ltso  7972  xrltso  9728
  Copyright terms: Public domain W3C validator