ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pofun Unicode version

Theorem pofun 4234
Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
Hypotheses
Ref Expression
pofun.1  |-  S  =  { <. x ,  y
>.  |  X R Y }
pofun.2  |-  ( x  =  y  ->  X  =  Y )
Assertion
Ref Expression
pofun  |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
Distinct variable groups:    x, R, y   
y, X    x, Y    x, A    x, B
Allowed substitution hints:    A( y)    B( y)    S( x, y)    X( x)    Y( y)

Proof of Theorem pofun
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 3035 . . . . . . 7  |-  F/_ x [_ v  /  x ]_ X
21nfel1 2292 . . . . . 6  |-  F/ x [_ v  /  x ]_ X  e.  B
3 csbeq1a 3012 . . . . . . 7  |-  ( x  =  v  ->  X  =  [_ v  /  x ]_ X )
43eleq1d 2208 . . . . . 6  |-  ( x  =  v  ->  ( X  e.  B  <->  [_ v  /  x ]_ X  e.  B
) )
52, 4rspc 2783 . . . . 5  |-  ( v  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ v  /  x ]_ X  e.  B )
)
65impcom 124 . . . 4  |-  ( ( A. x  e.  A  X  e.  B  /\  v  e.  A )  ->  [_ v  /  x ]_ X  e.  B
)
7 poirr 4229 . . . . 5  |-  ( ( R  Po  B  /\  [_ v  /  x ]_ X  e.  B )  ->  -.  [_ v  /  x ]_ X R [_ v  /  x ]_ X
)
8 df-br 3930 . . . . . 6  |-  ( v S v  <->  <. v ,  v >.  e.  S
)
9 pofun.1 . . . . . . 7  |-  S  =  { <. x ,  y
>.  |  X R Y }
109eleq2i 2206 . . . . . 6  |-  ( <.
v ,  v >.  e.  S  <->  <. v ,  v
>.  e.  { <. x ,  y >.  |  X R Y } )
11 nfcv 2281 . . . . . . . 8  |-  F/_ x R
12 nfcv 2281 . . . . . . . 8  |-  F/_ x Y
131, 11, 12nfbr 3974 . . . . . . 7  |-  F/ x [_ v  /  x ]_ X R Y
14 nfv 1508 . . . . . . 7  |-  F/ y
[_ v  /  x ]_ X R [_ v  /  x ]_ X
15 vex 2689 . . . . . . 7  |-  v  e. 
_V
163breq1d 3939 . . . . . . 7  |-  ( x  =  v  ->  ( X R Y  <->  [_ v  /  x ]_ X R Y ) )
17 vex 2689 . . . . . . . . . 10  |-  y  e. 
_V
18 pofun.2 . . . . . . . . . 10  |-  ( x  =  y  ->  X  =  Y )
1917, 12, 18csbief 3044 . . . . . . . . 9  |-  [_ y  /  x ]_ X  =  Y
20 csbeq1 3006 . . . . . . . . 9  |-  ( y  =  v  ->  [_ y  /  x ]_ X  = 
[_ v  /  x ]_ X )
2119, 20syl5eqr 2186 . . . . . . . 8  |-  ( y  =  v  ->  Y  =  [_ v  /  x ]_ X )
2221breq2d 3941 . . . . . . 7  |-  ( y  =  v  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X
) )
2313, 14, 15, 15, 16, 22opelopabf 4196 . . . . . 6  |-  ( <.
v ,  v >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X )
248, 10, 233bitri 205 . . . . 5  |-  ( v S v  <->  [_ v  /  x ]_ X R [_ v  /  x ]_ X
)
257, 24sylnibr 666 . . . 4  |-  ( ( R  Po  B  /\  [_ v  /  x ]_ X  e.  B )  ->  -.  v S v )
266, 25sylan2 284 . . 3  |-  ( ( R  Po  B  /\  ( A. x  e.  A  X  e.  B  /\  v  e.  A )
)  ->  -.  v S v )
2726anassrs 397 . 2  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  v  e.  A
)  ->  -.  v S v )
285com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( v  e.  A  ->  [_ v  /  x ]_ X  e.  B ) )
29 nfcsb1v 3035 . . . . . . . . 9  |-  F/_ x [_ w  /  x ]_ X
3029nfel1 2292 . . . . . . . 8  |-  F/ x [_ w  /  x ]_ X  e.  B
31 csbeq1a 3012 . . . . . . . . 9  |-  ( x  =  w  ->  X  =  [_ w  /  x ]_ X )
3231eleq1d 2208 . . . . . . . 8  |-  ( x  =  w  ->  ( X  e.  B  <->  [_ w  /  x ]_ X  e.  B
) )
3330, 32rspc 2783 . . . . . . 7  |-  ( w  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ w  /  x ]_ X  e.  B )
)
3433com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( w  e.  A  ->  [_ w  /  x ]_ X  e.  B ) )
35 nfcsb1v 3035 . . . . . . . . 9  |-  F/_ x [_ z  /  x ]_ X
3635nfel1 2292 . . . . . . . 8  |-  F/ x [_ z  /  x ]_ X  e.  B
37 csbeq1a 3012 . . . . . . . . 9  |-  ( x  =  z  ->  X  =  [_ z  /  x ]_ X )
3837eleq1d 2208 . . . . . . . 8  |-  ( x  =  z  ->  ( X  e.  B  <->  [_ z  /  x ]_ X  e.  B
) )
3936, 38rspc 2783 . . . . . . 7  |-  ( z  e.  A  ->  ( A. x  e.  A  X  e.  B  ->  [_ z  /  x ]_ X  e.  B )
)
4039com12 30 . . . . . 6  |-  ( A. x  e.  A  X  e.  B  ->  ( z  e.  A  ->  [_ z  /  x ]_ X  e.  B ) )
4128, 34, 403anim123d 1297 . . . . 5  |-  ( A. x  e.  A  X  e.  B  ->  ( ( v  e.  A  /\  w  e.  A  /\  z  e.  A )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) ) )
4241imp 123 . . . 4  |-  ( ( A. x  e.  A  X  e.  B  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )
4342adantll 467 . . 3  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )
44 potr 4230 . . . . 5  |-  ( ( R  Po  B  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( [_ v  /  x ]_ X R [_ w  /  x ]_ X  /\  [_ w  /  x ]_ X R [_ z  /  x ]_ X )  ->  [_ v  /  x ]_ X R [_ z  /  x ]_ X ) )
45 df-br 3930 . . . . . . 7  |-  ( v S w  <->  <. v ,  w >.  e.  S
)
469eleq2i 2206 . . . . . . 7  |-  ( <.
v ,  w >.  e.  S  <->  <. v ,  w >.  e.  { <. x ,  y >.  |  X R Y } )
47 nfv 1508 . . . . . . . 8  |-  F/ y
[_ v  /  x ]_ X R [_ w  /  x ]_ X
48 vex 2689 . . . . . . . 8  |-  w  e. 
_V
49 csbeq1 3006 . . . . . . . . . 10  |-  ( y  =  w  ->  [_ y  /  x ]_ X  = 
[_ w  /  x ]_ X )
5019, 49syl5eqr 2186 . . . . . . . . 9  |-  ( y  =  w  ->  Y  =  [_ w  /  x ]_ X )
5150breq2d 3941 . . . . . . . 8  |-  ( y  =  w  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X
) )
5213, 47, 15, 48, 16, 51opelopabf 4196 . . . . . . 7  |-  ( <.
v ,  w >.  e. 
{ <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X )
5345, 46, 523bitri 205 . . . . . 6  |-  ( v S w  <->  [_ v  /  x ]_ X R [_ w  /  x ]_ X
)
54 df-br 3930 . . . . . . 7  |-  ( w S z  <->  <. w ,  z >.  e.  S
)
559eleq2i 2206 . . . . . . 7  |-  ( <.
w ,  z >.  e.  S  <->  <. w ,  z
>.  e.  { <. x ,  y >.  |  X R Y } )
5629, 11, 12nfbr 3974 . . . . . . . 8  |-  F/ x [_ w  /  x ]_ X R Y
57 nfv 1508 . . . . . . . 8  |-  F/ y
[_ w  /  x ]_ X R [_ z  /  x ]_ X
58 vex 2689 . . . . . . . 8  |-  z  e. 
_V
5931breq1d 3939 . . . . . . . 8  |-  ( x  =  w  ->  ( X R Y  <->  [_ w  /  x ]_ X R Y ) )
60 csbeq1 3006 . . . . . . . . . 10  |-  ( y  =  z  ->  [_ y  /  x ]_ X  = 
[_ z  /  x ]_ X )
6119, 60syl5eqr 2186 . . . . . . . . 9  |-  ( y  =  z  ->  Y  =  [_ z  /  x ]_ X )
6261breq2d 3941 . . . . . . . 8  |-  ( y  =  z  ->  ( [_ w  /  x ]_ X R Y  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X
) )
6356, 57, 48, 58, 59, 62opelopabf 4196 . . . . . . 7  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X )
6454, 55, 633bitri 205 . . . . . 6  |-  ( w S z  <->  [_ w  /  x ]_ X R [_ z  /  x ]_ X
)
6553, 64anbi12i 455 . . . . 5  |-  ( ( v S w  /\  w S z )  <->  ( [_ v  /  x ]_ X R [_ w  /  x ]_ X  /\  [_ w  /  x ]_ X R
[_ z  /  x ]_ X ) )
66 df-br 3930 . . . . . 6  |-  ( v S z  <->  <. v ,  z >.  e.  S
)
679eleq2i 2206 . . . . . 6  |-  ( <.
v ,  z >.  e.  S  <->  <. v ,  z
>.  e.  { <. x ,  y >.  |  X R Y } )
68 nfv 1508 . . . . . . 7  |-  F/ y
[_ v  /  x ]_ X R [_ z  /  x ]_ X
6961breq2d 3941 . . . . . . 7  |-  ( y  =  z  ->  ( [_ v  /  x ]_ X R Y  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X
) )
7013, 68, 15, 58, 16, 69opelopabf 4196 . . . . . 6  |-  ( <.
v ,  z >.  e.  { <. x ,  y
>.  |  X R Y }  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X )
7166, 67, 703bitri 205 . . . . 5  |-  ( v S z  <->  [_ v  /  x ]_ X R [_ z  /  x ]_ X
)
7244, 65, 713imtr4g 204 . . . 4  |-  ( ( R  Po  B  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7372adantlr 468 . . 3  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( [_ v  /  x ]_ X  e.  B  /\  [_ w  /  x ]_ X  e.  B  /\  [_ z  /  x ]_ X  e.  B
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7443, 73syldan 280 . 2  |-  ( ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  /\  ( v  e.  A  /\  w  e.  A  /\  z  e.  A
) )  ->  (
( v S w  /\  w S z )  ->  v S
z ) )
7527, 74ispod 4226 1  |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   [_csb 3003   <.cop 3530   class class class wbr 3929   {copab 3988    Po wpo 4216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-po 4218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator