| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pofun | Unicode version | ||
| Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| pofun.1 |
|
| pofun.2 |
|
| Ref | Expression |
|---|---|
| pofun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v 3117 |
. . . . . . 7
| |
| 2 | 1 | nfel1 2350 |
. . . . . 6
|
| 3 | csbeq1a 3093 |
. . . . . . 7
| |
| 4 | 3 | eleq1d 2265 |
. . . . . 6
|
| 5 | 2, 4 | rspc 2862 |
. . . . 5
|
| 6 | 5 | impcom 125 |
. . . 4
|
| 7 | poirr 4342 |
. . . . 5
| |
| 8 | df-br 4034 |
. . . . . 6
| |
| 9 | pofun.1 |
. . . . . . 7
| |
| 10 | 9 | eleq2i 2263 |
. . . . . 6
|
| 11 | nfcv 2339 |
. . . . . . . 8
| |
| 12 | nfcv 2339 |
. . . . . . . 8
| |
| 13 | 1, 11, 12 | nfbr 4079 |
. . . . . . 7
|
| 14 | nfv 1542 |
. . . . . . 7
| |
| 15 | vex 2766 |
. . . . . . 7
| |
| 16 | 3 | breq1d 4043 |
. . . . . . 7
|
| 17 | vex 2766 |
. . . . . . . . . 10
| |
| 18 | pofun.2 |
. . . . . . . . . 10
| |
| 19 | 17, 12, 18 | csbief 3129 |
. . . . . . . . 9
|
| 20 | csbeq1 3087 |
. . . . . . . . 9
| |
| 21 | 19, 20 | eqtr3id 2243 |
. . . . . . . 8
|
| 22 | 21 | breq2d 4045 |
. . . . . . 7
|
| 23 | 13, 14, 15, 15, 16, 22 | opelopabf 4309 |
. . . . . 6
|
| 24 | 8, 10, 23 | 3bitri 206 |
. . . . 5
|
| 25 | 7, 24 | sylnibr 678 |
. . . 4
|
| 26 | 6, 25 | sylan2 286 |
. . 3
|
| 27 | 26 | anassrs 400 |
. 2
|
| 28 | 5 | com12 30 |
. . . . . 6
|
| 29 | nfcsb1v 3117 |
. . . . . . . . 9
| |
| 30 | 29 | nfel1 2350 |
. . . . . . . 8
|
| 31 | csbeq1a 3093 |
. . . . . . . . 9
| |
| 32 | 31 | eleq1d 2265 |
. . . . . . . 8
|
| 33 | 30, 32 | rspc 2862 |
. . . . . . 7
|
| 34 | 33 | com12 30 |
. . . . . 6
|
| 35 | nfcsb1v 3117 |
. . . . . . . . 9
| |
| 36 | 35 | nfel1 2350 |
. . . . . . . 8
|
| 37 | csbeq1a 3093 |
. . . . . . . . 9
| |
| 38 | 37 | eleq1d 2265 |
. . . . . . . 8
|
| 39 | 36, 38 | rspc 2862 |
. . . . . . 7
|
| 40 | 39 | com12 30 |
. . . . . 6
|
| 41 | 28, 34, 40 | 3anim123d 1330 |
. . . . 5
|
| 42 | 41 | imp 124 |
. . . 4
|
| 43 | 42 | adantll 476 |
. . 3
|
| 44 | potr 4343 |
. . . . 5
| |
| 45 | df-br 4034 |
. . . . . . 7
| |
| 46 | 9 | eleq2i 2263 |
. . . . . . 7
|
| 47 | nfv 1542 |
. . . . . . . 8
| |
| 48 | vex 2766 |
. . . . . . . 8
| |
| 49 | csbeq1 3087 |
. . . . . . . . . 10
| |
| 50 | 19, 49 | eqtr3id 2243 |
. . . . . . . . 9
|
| 51 | 50 | breq2d 4045 |
. . . . . . . 8
|
| 52 | 13, 47, 15, 48, 16, 51 | opelopabf 4309 |
. . . . . . 7
|
| 53 | 45, 46, 52 | 3bitri 206 |
. . . . . 6
|
| 54 | df-br 4034 |
. . . . . . 7
| |
| 55 | 9 | eleq2i 2263 |
. . . . . . 7
|
| 56 | 29, 11, 12 | nfbr 4079 |
. . . . . . . 8
|
| 57 | nfv 1542 |
. . . . . . . 8
| |
| 58 | vex 2766 |
. . . . . . . 8
| |
| 59 | 31 | breq1d 4043 |
. . . . . . . 8
|
| 60 | csbeq1 3087 |
. . . . . . . . . 10
| |
| 61 | 19, 60 | eqtr3id 2243 |
. . . . . . . . 9
|
| 62 | 61 | breq2d 4045 |
. . . . . . . 8
|
| 63 | 56, 57, 48, 58, 59, 62 | opelopabf 4309 |
. . . . . . 7
|
| 64 | 54, 55, 63 | 3bitri 206 |
. . . . . 6
|
| 65 | 53, 64 | anbi12i 460 |
. . . . 5
|
| 66 | df-br 4034 |
. . . . . 6
| |
| 67 | 9 | eleq2i 2263 |
. . . . . 6
|
| 68 | nfv 1542 |
. . . . . . 7
| |
| 69 | 61 | breq2d 4045 |
. . . . . . 7
|
| 70 | 13, 68, 15, 58, 16, 69 | opelopabf 4309 |
. . . . . 6
|
| 71 | 66, 67, 70 | 3bitri 206 |
. . . . 5
|
| 72 | 44, 65, 71 | 3imtr4g 205 |
. . . 4
|
| 73 | 72 | adantlr 477 |
. . 3
|
| 74 | 43, 73 | syldan 282 |
. 2
|
| 75 | 27, 74 | ispod 4339 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-po 4331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |