Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pofun | Unicode version |
Description: A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.) |
Ref | Expression |
---|---|
pofun.1 | |
pofun.2 |
Ref | Expression |
---|---|
pofun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3078 | . . . . . . 7 | |
2 | 1 | nfel1 2319 | . . . . . 6 |
3 | csbeq1a 3054 | . . . . . . 7 | |
4 | 3 | eleq1d 2235 | . . . . . 6 |
5 | 2, 4 | rspc 2824 | . . . . 5 |
6 | 5 | impcom 124 | . . . 4 |
7 | poirr 4285 | . . . . 5 | |
8 | df-br 3983 | . . . . . 6 | |
9 | pofun.1 | . . . . . . 7 | |
10 | 9 | eleq2i 2233 | . . . . . 6 |
11 | nfcv 2308 | . . . . . . . 8 | |
12 | nfcv 2308 | . . . . . . . 8 | |
13 | 1, 11, 12 | nfbr 4028 | . . . . . . 7 |
14 | nfv 1516 | . . . . . . 7 | |
15 | vex 2729 | . . . . . . 7 | |
16 | 3 | breq1d 3992 | . . . . . . 7 |
17 | vex 2729 | . . . . . . . . . 10 | |
18 | pofun.2 | . . . . . . . . . 10 | |
19 | 17, 12, 18 | csbief 3089 | . . . . . . . . 9 |
20 | csbeq1 3048 | . . . . . . . . 9 | |
21 | 19, 20 | eqtr3id 2213 | . . . . . . . 8 |
22 | 21 | breq2d 3994 | . . . . . . 7 |
23 | 13, 14, 15, 15, 16, 22 | opelopabf 4252 | . . . . . 6 |
24 | 8, 10, 23 | 3bitri 205 | . . . . 5 |
25 | 7, 24 | sylnibr 667 | . . . 4 |
26 | 6, 25 | sylan2 284 | . . 3 |
27 | 26 | anassrs 398 | . 2 |
28 | 5 | com12 30 | . . . . . 6 |
29 | nfcsb1v 3078 | . . . . . . . . 9 | |
30 | 29 | nfel1 2319 | . . . . . . . 8 |
31 | csbeq1a 3054 | . . . . . . . . 9 | |
32 | 31 | eleq1d 2235 | . . . . . . . 8 |
33 | 30, 32 | rspc 2824 | . . . . . . 7 |
34 | 33 | com12 30 | . . . . . 6 |
35 | nfcsb1v 3078 | . . . . . . . . 9 | |
36 | 35 | nfel1 2319 | . . . . . . . 8 |
37 | csbeq1a 3054 | . . . . . . . . 9 | |
38 | 37 | eleq1d 2235 | . . . . . . . 8 |
39 | 36, 38 | rspc 2824 | . . . . . . 7 |
40 | 39 | com12 30 | . . . . . 6 |
41 | 28, 34, 40 | 3anim123d 1309 | . . . . 5 |
42 | 41 | imp 123 | . . . 4 |
43 | 42 | adantll 468 | . . 3 |
44 | potr 4286 | . . . . 5 | |
45 | df-br 3983 | . . . . . . 7 | |
46 | 9 | eleq2i 2233 | . . . . . . 7 |
47 | nfv 1516 | . . . . . . . 8 | |
48 | vex 2729 | . . . . . . . 8 | |
49 | csbeq1 3048 | . . . . . . . . . 10 | |
50 | 19, 49 | eqtr3id 2213 | . . . . . . . . 9 |
51 | 50 | breq2d 3994 | . . . . . . . 8 |
52 | 13, 47, 15, 48, 16, 51 | opelopabf 4252 | . . . . . . 7 |
53 | 45, 46, 52 | 3bitri 205 | . . . . . 6 |
54 | df-br 3983 | . . . . . . 7 | |
55 | 9 | eleq2i 2233 | . . . . . . 7 |
56 | 29, 11, 12 | nfbr 4028 | . . . . . . . 8 |
57 | nfv 1516 | . . . . . . . 8 | |
58 | vex 2729 | . . . . . . . 8 | |
59 | 31 | breq1d 3992 | . . . . . . . 8 |
60 | csbeq1 3048 | . . . . . . . . . 10 | |
61 | 19, 60 | eqtr3id 2213 | . . . . . . . . 9 |
62 | 61 | breq2d 3994 | . . . . . . . 8 |
63 | 56, 57, 48, 58, 59, 62 | opelopabf 4252 | . . . . . . 7 |
64 | 54, 55, 63 | 3bitri 205 | . . . . . 6 |
65 | 53, 64 | anbi12i 456 | . . . . 5 |
66 | df-br 3983 | . . . . . 6 | |
67 | 9 | eleq2i 2233 | . . . . . 6 |
68 | nfv 1516 | . . . . . . 7 | |
69 | 61 | breq2d 3994 | . . . . . . 7 |
70 | 13, 68, 15, 58, 16, 69 | opelopabf 4252 | . . . . . 6 |
71 | 66, 67, 70 | 3bitri 205 | . . . . 5 |
72 | 44, 65, 71 | 3imtr4g 204 | . . . 4 |
73 | 72 | adantlr 469 | . . 3 |
74 | 43, 73 | syldan 280 | . 2 |
75 | 27, 74 | ispod 4282 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 csb 3045 cop 3579 class class class wbr 3982 copab 4042 wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-po 4274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |