ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sosng Unicode version

Theorem sosng 4711
Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
Assertion
Ref Expression
sosng  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )

Proof of Theorem sosng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sopo 4325 . . 3  |-  ( R  Or  { A }  ->  R  Po  { A } )
2 posng 4710 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Po  { A } 
<->  -.  A R A ) )
31, 2imbitrid 154 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A }  ->  -.  A R A ) )
42biimpar 297 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Po  { A } )
5 ax-in2 616 . . . . . . . . 9  |-  ( -.  A R A  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
65adantr 276 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
7 elsni 3622 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  A )
8 elsni 3622 . . . . . . . . . . 11  |-  ( y  e.  { A }  ->  y  =  A )
97, 8breqan12d 4031 . . . . . . . . . 10  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x R y  <->  A R A ) )
109imbi1d 231 . . . . . . . . 9  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( A R A  ->  ( x R z  \/  z R y ) ) ) )
1110adantl 277 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( ( x R y  ->  ( x R z  \/  z R y ) )  <-> 
( A R A  ->  ( x R z  \/  z R y ) ) ) )
126, 11mpbird 167 . . . . . . 7  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1312ralrimivw 2561 . . . . . 6  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  ->  A. z  e.  { A }  ( x R y  ->  ( x R z  \/  z R y ) ) )
1413ralrimivva 2569 . . . . 5  |-  ( -.  A R A  ->  A. x  e.  { A } A. y  e.  { A } A. z  e. 
{ A }  (
x R y  -> 
( x R z  \/  z R y ) ) )
1514adantl 277 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  A. x  e.  { A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) )
16 df-iso 4309 . . . 4  |-  ( R  Or  { A }  <->  ( R  Po  { A }  /\  A. x  e. 
{ A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
174, 15, 16sylanbrc 417 . . 3  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Or  { A } )
1817ex 115 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( -.  A R A  ->  R  Or  { A } ) )
193, 18impbid 129 1  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2158   A.wral 2465   _Vcvv 2749   {csn 3604   class class class wbr 4015    Po wpo 4306    Or wor 4307   Rel wrel 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-sbc 2975  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-po 4308  df-iso 4309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator