ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sosng Unicode version

Theorem sosng 4748
Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
Assertion
Ref Expression
sosng  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )

Proof of Theorem sosng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sopo 4360 . . 3  |-  ( R  Or  { A }  ->  R  Po  { A } )
2 posng 4747 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Po  { A } 
<->  -.  A R A ) )
31, 2imbitrid 154 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A }  ->  -.  A R A ) )
42biimpar 297 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Po  { A } )
5 ax-in2 616 . . . . . . . . 9  |-  ( -.  A R A  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
65adantr 276 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
7 elsni 3651 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  A )
8 elsni 3651 . . . . . . . . . . 11  |-  ( y  e.  { A }  ->  y  =  A )
97, 8breqan12d 4060 . . . . . . . . . 10  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x R y  <->  A R A ) )
109imbi1d 231 . . . . . . . . 9  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( A R A  ->  ( x R z  \/  z R y ) ) ) )
1110adantl 277 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( ( x R y  ->  ( x R z  \/  z R y ) )  <-> 
( A R A  ->  ( x R z  \/  z R y ) ) ) )
126, 11mpbird 167 . . . . . . 7  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1312ralrimivw 2580 . . . . . 6  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  ->  A. z  e.  { A }  ( x R y  ->  ( x R z  \/  z R y ) ) )
1413ralrimivva 2588 . . . . 5  |-  ( -.  A R A  ->  A. x  e.  { A } A. y  e.  { A } A. z  e. 
{ A }  (
x R y  -> 
( x R z  \/  z R y ) ) )
1514adantl 277 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  A. x  e.  { A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) )
16 df-iso 4344 . . . 4  |-  ( R  Or  { A }  <->  ( R  Po  { A }  /\  A. x  e. 
{ A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
174, 15, 16sylanbrc 417 . . 3  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Or  { A } )
1817ex 115 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( -.  A R A  ->  R  Or  { A } ) )
193, 18impbid 129 1  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2176   A.wral 2484   _Vcvv 2772   {csn 3633   class class class wbr 4044    Po wpo 4341    Or wor 4342   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-po 4343  df-iso 4344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator