| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sosng | Unicode version | ||
| Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| sosng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 4404 |
. . 3
| |
| 2 | posng 4791 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 2 | biimpar 297 |
. . . 4
|
| 5 | ax-in2 618 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 276 |
. . . . . . . 8
|
| 7 | elsni 3684 |
. . . . . . . . . . 11
| |
| 8 | elsni 3684 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | breqan12d 4099 |
. . . . . . . . . 10
|
| 10 | 9 | imbi1d 231 |
. . . . . . . . 9
|
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 6, 11 | mpbird 167 |
. . . . . . 7
|
| 13 | 12 | ralrimivw 2604 |
. . . . . 6
|
| 14 | 13 | ralrimivva 2612 |
. . . . 5
|
| 15 | 14 | adantl 277 |
. . . 4
|
| 16 | df-iso 4388 |
. . . 4
| |
| 17 | 4, 15, 16 | sylanbrc 417 |
. . 3
|
| 18 | 17 | ex 115 |
. 2
|
| 19 | 3, 18 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-po 4387 df-iso 4388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |