Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sosng | Unicode version |
Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
Ref | Expression |
---|---|
sosng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 4298 | . . 3 | |
2 | posng 4683 | . . 3 | |
3 | 1, 2 | syl5ib 153 | . 2 |
4 | 2 | biimpar 295 | . . . 4 |
5 | ax-in2 610 | . . . . . . . . 9 | |
6 | 5 | adantr 274 | . . . . . . . 8 |
7 | elsni 3601 | . . . . . . . . . . 11 | |
8 | elsni 3601 | . . . . . . . . . . 11 | |
9 | 7, 8 | breqan12d 4005 | . . . . . . . . . 10 |
10 | 9 | imbi1d 230 | . . . . . . . . 9 |
11 | 10 | adantl 275 | . . . . . . . 8 |
12 | 6, 11 | mpbird 166 | . . . . . . 7 |
13 | 12 | ralrimivw 2544 | . . . . . 6 |
14 | 13 | ralrimivva 2552 | . . . . 5 |
15 | 14 | adantl 275 | . . . 4 |
16 | df-iso 4282 | . . . 4 | |
17 | 4, 15, 16 | sylanbrc 415 | . . 3 |
18 | 17 | ex 114 | . 2 |
19 | 3, 18 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wcel 2141 wral 2448 cvv 2730 csn 3583 class class class wbr 3989 wpo 4279 wor 4280 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-po 4281 df-iso 4282 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |