ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sosng Unicode version

Theorem sosng 4499
Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
Assertion
Ref Expression
sosng  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )

Proof of Theorem sosng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sopo 4131 . . 3  |-  ( R  Or  { A }  ->  R  Po  { A } )
2 posng 4498 . . 3  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Po  { A } 
<->  -.  A R A ) )
31, 2syl5ib 152 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A }  ->  -.  A R A ) )
42biimpar 291 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Po  { A } )
5 ax-in2 580 . . . . . . . . 9  |-  ( -.  A R A  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
65adantr 270 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( A R A  ->  ( x R z  \/  z R y ) ) )
7 elsni 3459 . . . . . . . . . . 11  |-  ( x  e.  { A }  ->  x  =  A )
8 elsni 3459 . . . . . . . . . . 11  |-  ( y  e.  { A }  ->  y  =  A )
97, 8breqan12d 3852 . . . . . . . . . 10  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x R y  <->  A R A ) )
109imbi1d 229 . . . . . . . . 9  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( A R A  ->  ( x R z  \/  z R y ) ) ) )
1110adantl 271 . . . . . . . 8  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( ( x R y  ->  ( x R z  \/  z R y ) )  <-> 
( A R A  ->  ( x R z  \/  z R y ) ) ) )
126, 11mpbird 165 . . . . . . 7  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
1312ralrimivw 2447 . . . . . 6  |-  ( ( -.  A R A  /\  ( x  e. 
{ A }  /\  y  e.  { A } ) )  ->  A. z  e.  { A }  ( x R y  ->  ( x R z  \/  z R y ) ) )
1413ralrimivva 2455 . . . . 5  |-  ( -.  A R A  ->  A. x  e.  { A } A. y  e.  { A } A. z  e. 
{ A }  (
x R y  -> 
( x R z  \/  z R y ) ) )
1514adantl 271 . . . 4  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  A. x  e.  { A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) )
16 df-iso 4115 . . . 4  |-  ( R  Or  { A }  <->  ( R  Po  { A }  /\  A. x  e. 
{ A } A. y  e.  { A } A. z  e.  { A }  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
174, 15, 16sylanbrc 408 . . 3  |-  ( ( ( Rel  R  /\  A  e.  _V )  /\  -.  A R A )  ->  R  Or  { A } )
1817ex 113 . 2  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( -.  A R A  ->  R  Or  { A } ) )
193, 18impbid 127 1  |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A } 
<->  -.  A R A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    e. wcel 1438   A.wral 2359   _Vcvv 2619   {csn 3441   class class class wbr 3837    Po wpo 4112    Or wor 4113   Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-sbc 2839  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-po 4114  df-iso 4115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator