Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sosng | Unicode version |
Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
Ref | Expression |
---|---|
sosng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 4291 | . . 3 | |
2 | posng 4676 | . . 3 | |
3 | 1, 2 | syl5ib 153 | . 2 |
4 | 2 | biimpar 295 | . . . 4 |
5 | ax-in2 605 | . . . . . . . . 9 | |
6 | 5 | adantr 274 | . . . . . . . 8 |
7 | elsni 3594 | . . . . . . . . . . 11 | |
8 | elsni 3594 | . . . . . . . . . . 11 | |
9 | 7, 8 | breqan12d 3998 | . . . . . . . . . 10 |
10 | 9 | imbi1d 230 | . . . . . . . . 9 |
11 | 10 | adantl 275 | . . . . . . . 8 |
12 | 6, 11 | mpbird 166 | . . . . . . 7 |
13 | 12 | ralrimivw 2540 | . . . . . 6 |
14 | 13 | ralrimivva 2548 | . . . . 5 |
15 | 14 | adantl 275 | . . . 4 |
16 | df-iso 4275 | . . . 4 | |
17 | 4, 15, 16 | sylanbrc 414 | . . 3 |
18 | 17 | ex 114 | . 2 |
19 | 3, 18 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wcel 2136 wral 2444 cvv 2726 csn 3576 class class class wbr 3982 wpo 4272 wor 4273 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 df-iso 4275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |