| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sosng | Unicode version | ||
| Description: Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| sosng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo 4349 |
. . 3
| |
| 2 | posng 4736 |
. . 3
| |
| 3 | 1, 2 | imbitrid 154 |
. 2
|
| 4 | 2 | biimpar 297 |
. . . 4
|
| 5 | ax-in2 616 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 276 |
. . . . . . . 8
|
| 7 | elsni 3641 |
. . . . . . . . . . 11
| |
| 8 | elsni 3641 |
. . . . . . . . . . 11
| |
| 9 | 7, 8 | breqan12d 4050 |
. . . . . . . . . 10
|
| 10 | 9 | imbi1d 231 |
. . . . . . . . 9
|
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | 6, 11 | mpbird 167 |
. . . . . . 7
|
| 13 | 12 | ralrimivw 2571 |
. . . . . 6
|
| 14 | 13 | ralrimivva 2579 |
. . . . 5
|
| 15 | 14 | adantl 277 |
. . . 4
|
| 16 | df-iso 4333 |
. . . 4
| |
| 17 | 4, 15, 16 | sylanbrc 417 |
. . 3
|
| 18 | 17 | ex 115 |
. 2
|
| 19 | 3, 18 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-po 4332 df-iso 4333 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |