ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sonr Unicode version

Theorem sonr 4302
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )

Proof of Theorem sonr
StepHypRef Expression
1 sopo 4298 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 poirr 4292 . 2  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
31, 2sylan 281 1  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2141   class class class wbr 3989    Po wpo 4279    Or wor 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-po 4281  df-iso 4282
This theorem is referenced by:  sotricim  4308  sotritrieq  4310  soirri  5005  addnqprlemfl  7521  addnqprlemfu  7522  mulnqprlemfl  7537  mulnqprlemfu  7538  1ne0sr  7728
  Copyright terms: Public domain W3C validator