ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sonr Unicode version

Theorem sonr 4318
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )

Proof of Theorem sonr
StepHypRef Expression
1 sopo 4314 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 poirr 4308 . 2  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
31, 2sylan 283 1  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2148   class class class wbr 4004    Po wpo 4295    Or wor 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-po 4297  df-iso 4298
This theorem is referenced by:  sotricim  4324  sotritrieq  4326  soirri  5024  addnqprlemfl  7558  addnqprlemfu  7559  mulnqprlemfl  7574  mulnqprlemfu  7575  1ne0sr  7765
  Copyright terms: Public domain W3C validator