ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sonr Unicode version

Theorem sonr 4382
Description: A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
Assertion
Ref Expression
sonr  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )

Proof of Theorem sonr
StepHypRef Expression
1 sopo 4378 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 poirr 4372 . 2  |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
31, 2sylan 283 1  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2178   class class class wbr 4059    Po wpo 4359    Or wor 4360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-po 4361  df-iso 4362
This theorem is referenced by:  sotricim  4388  sotritrieq  4390  soirri  5096  addnqprlemfl  7707  addnqprlemfu  7708  mulnqprlemfl  7723  mulnqprlemfu  7724  1ne0sr  7914
  Copyright terms: Public domain W3C validator