Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > so2nr | Unicode version |
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.) |
Ref | Expression |
---|---|
so2nr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sopo 4268 | . 2 | |
2 | po2nr 4264 | . 2 | |
3 | 1, 2 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wcel 2125 class class class wbr 3961 wpo 4249 wor 4250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-po 4251 df-iso 4252 |
This theorem is referenced by: sotricim 4278 cauappcvgprlemdisj 7550 cauappcvgprlemladdru 7555 cauappcvgprlemladdrl 7556 caucvgprlemnbj 7566 caucvgprprlemnbj 7592 suplocexprlemmu 7617 ltnsym2 7946 |
Copyright terms: Public domain | W3C validator |