ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so2nr Unicode version

Theorem so2nr 4148
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so2nr  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem so2nr
StepHypRef Expression
1 sopo 4140 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 po2nr 4136 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
31, 2sylan 277 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    e. wcel 1438   class class class wbr 3845    Po wpo 4121    Or wor 4122
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-po 4123  df-iso 4124
This theorem is referenced by:  sotricim  4150  cauappcvgprlemdisj  7210  cauappcvgprlemladdru  7215  cauappcvgprlemladdrl  7216  caucvgprlemnbj  7226  caucvgprprlemnbj  7252  ltnsym2  7575
  Copyright terms: Public domain W3C validator