ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so2nr Unicode version

Theorem so2nr 4299
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so2nr  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem so2nr
StepHypRef Expression
1 sopo 4291 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 po2nr 4287 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
31, 2sylan 281 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3982    Po wpo 4272    Or wor 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-po 4274  df-iso 4275
This theorem is referenced by:  sotricim  4301  cauappcvgprlemdisj  7592  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  caucvgprlemnbj  7608  caucvgprprlemnbj  7634  suplocexprlemmu  7659  ltnsym2  7989
  Copyright terms: Public domain W3C validator