ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so2nr Unicode version

Theorem so2nr 4368
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
Assertion
Ref Expression
so2nr  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )

Proof of Theorem so2nr
StepHypRef Expression
1 sopo 4360 . 2  |-  ( R  Or  A  ->  R  Po  A )
2 po2nr 4356 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
31, 2sylan 283 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R C  /\  C R B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2176   class class class wbr 4044    Po wpo 4341    Or wor 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-po 4343  df-iso 4344
This theorem is referenced by:  sotricim  4370  cauappcvgprlemdisj  7764  cauappcvgprlemladdru  7769  cauappcvgprlemladdrl  7770  caucvgprlemnbj  7780  caucvgprprlemnbj  7806  suplocexprlemmu  7831  ltnsym2  8163
  Copyright terms: Public domain W3C validator