ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq Unicode version

Theorem fimaxq 10839
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9660 . . . . 5  |-  QQ  C_  RR
2 sstr 3178 . . . . . 6  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  A  C_  RR )
3 ltso 8065 . . . . . . 7  |-  <  Or  RR
4 sopo 4331 . . . . . . 7  |-  (  < 
Or  RR  ->  <  Po  RR )
53, 4ax-mp 5 . . . . . 6  |-  <  Po  RR
6 poss 4316 . . . . . 6  |-  ( A 
C_  RR  ->  (  < 
Po  RR  ->  <  Po  A ) )
72, 5, 6mpisyl 1457 . . . . 5  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  <  Po  A )
81, 7mpan2 425 . . . 4  |-  ( A 
C_  QQ  ->  <  Po  A )
983ad2ant1 1020 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  <  Po  A )
10 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A  C_  QQ )
11 simprl 529 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
1210, 11sseldd 3171 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  QQ )
13 simprr 531 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
1410, 13sseldd 3171 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  QQ )
15 qtri3or 10273 . . . . 5  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( x  <  y  \/  x  =  y  \/  y  <  x ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
1716ralrimivva 2572 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A. x  e.  A  A. y  e.  A  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
18 simp2 1000 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  e. 
Fin )
19 simp3 1001 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  =/=  (/) )
209, 17, 18, 19fimax2gtri 6929 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <  y )
21 simpll1 1038 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  A  C_  QQ )
22 simpr 110 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
2321, 22sseldd 3171 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  QQ )
24 qre 9655 . . . . . 6  |-  ( y  e.  QQ  ->  y  e.  RR )
2523, 24syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  RR )
26 simplr 528 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  A )
2721, 26sseldd 3171 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  QQ )
28 qre 9655 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  RR )
3025, 29lenltd 8105 . . . 4  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  ( y  <_  x  <->  -.  x  <  y ) )
3130ralbidva 2486 . . 3  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  ->  ( A. y  e.  A  y  <_  x  <->  A. y  e.  A  -.  x  <  y ) )
3231rexbidva 2487 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  y  <_  x  <->  E. x  e.  A  A. y  e.  A  -.  x  <  y ) )
3320, 32mpbird 167 1  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 979    /\ w3a 980    e. wcel 2160    =/= wne 2360   A.wral 2468   E.wrex 2469    C_ wss 3144   (/)c0 3437   class class class wbr 4018    Po wpo 4312    Or wor 4313   Fincfn 6766   RRcr 7840    < clt 8022    <_ cle 8023   QQcq 9649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-er 6559  df-en 6767  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-n0 9207  df-z 9284  df-q 9650  df-rp 9684
This theorem is referenced by:  fiubm  10840  zfz1iso  10853
  Copyright terms: Public domain W3C validator