ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq Unicode version

Theorem fimaxq 10740
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9568 . . . . 5  |-  QQ  C_  RR
2 sstr 3150 . . . . . 6  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  A  C_  RR )
3 ltso 7976 . . . . . . 7  |-  <  Or  RR
4 sopo 4291 . . . . . . 7  |-  (  < 
Or  RR  ->  <  Po  RR )
53, 4ax-mp 5 . . . . . 6  |-  <  Po  RR
6 poss 4276 . . . . . 6  |-  ( A 
C_  RR  ->  (  < 
Po  RR  ->  <  Po  A ) )
72, 5, 6mpisyl 1434 . . . . 5  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  <  Po  A )
81, 7mpan2 422 . . . 4  |-  ( A 
C_  QQ  ->  <  Po  A )
983ad2ant1 1008 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  <  Po  A )
10 simpl1 990 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A  C_  QQ )
11 simprl 521 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
1210, 11sseldd 3143 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  QQ )
13 simprr 522 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
1410, 13sseldd 3143 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  QQ )
15 qtri3or 10178 . . . . 5  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( x  <  y  \/  x  =  y  \/  y  <  x ) )
1612, 14, 15syl2anc 409 . . . 4  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
1716ralrimivva 2548 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A. x  e.  A  A. y  e.  A  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
18 simp2 988 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  e. 
Fin )
19 simp3 989 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  =/=  (/) )
209, 17, 18, 19fimax2gtri 6867 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <  y )
21 simpll1 1026 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  A  C_  QQ )
22 simpr 109 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
2321, 22sseldd 3143 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  QQ )
24 qre 9563 . . . . . 6  |-  ( y  e.  QQ  ->  y  e.  RR )
2523, 24syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  RR )
26 simplr 520 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  A )
2721, 26sseldd 3143 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  QQ )
28 qre 9563 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  RR )
3025, 29lenltd 8016 . . . 4  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  ( y  <_  x  <->  -.  x  <  y ) )
3130ralbidva 2462 . . 3  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  ->  ( A. y  e.  A  y  <_  x  <->  A. y  e.  A  -.  x  <  y ) )
3231rexbidva 2463 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  y  <_  x  <->  E. x  e.  A  A. y  e.  A  -.  x  <  y ) )
3320, 32mpbird 166 1  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ w3o 967    /\ w3a 968    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445    C_ wss 3116   (/)c0 3409   class class class wbr 3982    Po wpo 4272    Or wor 4273   Fincfn 6706   RRcr 7752    < clt 7933    <_ cle 7934   QQcq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-en 6707  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590
This theorem is referenced by:  fiubm  10741  zfz1iso  10754
  Copyright terms: Public domain W3C validator