ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxq Unicode version

Theorem fimaxq 10775
Description: A finite set of rational numbers has a maximum. (Contributed by Jim Kingdon, 6-Sep-2022.)
Assertion
Ref Expression
fimaxq  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxq
StepHypRef Expression
1 qssre 9603 . . . . 5  |-  QQ  C_  RR
2 sstr 3161 . . . . . 6  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  A  C_  RR )
3 ltso 8009 . . . . . . 7  |-  <  Or  RR
4 sopo 4307 . . . . . . 7  |-  (  < 
Or  RR  ->  <  Po  RR )
53, 4ax-mp 5 . . . . . 6  |-  <  Po  RR
6 poss 4292 . . . . . 6  |-  ( A 
C_  RR  ->  (  < 
Po  RR  ->  <  Po  A ) )
72, 5, 6mpisyl 1444 . . . . 5  |-  ( ( A  C_  QQ  /\  QQ  C_  RR )  ->  <  Po  A )
81, 7mpan2 425 . . . 4  |-  ( A 
C_  QQ  ->  <  Po  A )
983ad2ant1 1018 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  <  Po  A )
10 simpl1 1000 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A  C_  QQ )
11 simprl 529 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
1210, 11sseldd 3154 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  QQ )
13 simprr 531 . . . . . 6  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
1410, 13sseldd 3154 . . . . 5  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  QQ )
15 qtri3or 10213 . . . . 5  |-  ( ( x  e.  QQ  /\  y  e.  QQ )  ->  ( x  <  y  \/  x  =  y  \/  y  <  x ) )
1612, 14, 15syl2anc 411 . . . 4  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
1716ralrimivva 2557 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A. x  e.  A  A. y  e.  A  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
18 simp2 998 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  e. 
Fin )
19 simp3 999 . . 3  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  A  =/=  (/) )
209, 17, 18, 19fimax2gtri 6891 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  -.  x  <  y )
21 simpll1 1036 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  A  C_  QQ )
22 simpr 110 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
2321, 22sseldd 3154 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  QQ )
24 qre 9598 . . . . . 6  |-  ( y  e.  QQ  ->  y  e.  RR )
2523, 24syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  y  e.  RR )
26 simplr 528 . . . . . . 7  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  A )
2721, 26sseldd 3154 . . . . . 6  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  QQ )
28 qre 9598 . . . . . 6  |-  ( x  e.  QQ  ->  x  e.  RR )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  x  e.  RR )
3025, 29lenltd 8049 . . . 4  |-  ( ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  /\  y  e.  A
)  ->  ( y  <_  x  <->  -.  x  <  y ) )
3130ralbidva 2471 . . 3  |-  ( ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  /\  x  e.  A )  ->  ( A. y  e.  A  y  <_  x  <->  A. y  e.  A  -.  x  <  y ) )
3231rexbidva 2472 . 2  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  y  <_  x  <->  E. x  e.  A  A. y  e.  A  -.  x  <  y ) )
3320, 32mpbird 167 1  |-  ( ( A  C_  QQ  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ w3o 977    /\ w3a 978    e. wcel 2146    =/= wne 2345   A.wral 2453   E.wrex 2454    C_ wss 3127   (/)c0 3420   class class class wbr 3998    Po wpo 4288    Or wor 4289   Fincfn 6730   RRcr 7785    < clt 7966    <_ cle 7967   QQcq 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-er 6525  df-en 6731  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-n0 9150  df-z 9227  df-q 9593  df-rp 9625
This theorem is referenced by:  fiubm  10776  zfz1iso  10789
  Copyright terms: Public domain W3C validator