ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcdv Unicode version

Theorem spcdv 2834
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 2856. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1  |-  ( ph  ->  A  e.  B )
spcdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
spcdv  |-  ( ph  ->  ( A. x ps 
->  ch ) )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2  |-  ( ph  ->  A  e.  B )
2 spcdv.2 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
32biimpd 144 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
41, 3spcimdv 2833 1  |-  ( ph  ->  ( A. x ps 
->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1361    = wceq 1363    e. wcel 2158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator