ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcdv GIF version

Theorem spcdv 2774
Description: Rule of specialization, using implicit substitution. Analogous to rspcdv 2795. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
spcdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcdv
StepHypRef Expression
1 spcimdv.1 . 2 (𝜑𝐴𝐵)
2 spcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimpd 143 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
41, 3spcimdv 2773 1 (𝜑 → (∀𝑥𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wcel 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator