ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimedv Unicode version

Theorem spcimedv 2812
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1  |-  ( ph  ->  A  e.  B )
spcimedv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
Assertion
Ref Expression
spcimedv  |-  ( ph  ->  ( ch  ->  E. x ps ) )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem spcimedv
StepHypRef Expression
1 spcimedv.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
21ex 114 . . 3  |-  ( ph  ->  ( x  =  A  ->  ( ch  ->  ps ) ) )
32alrimiv 1862 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  ( ch  ->  ps ) ) )
4 spcimdv.1 . 2  |-  ( ph  ->  A  e.  B )
5 nfv 1516 . . 3  |-  F/ x ch
6 nfcv 2308 . . 3  |-  F/_ x A
75, 6spcimegft 2804 . 2  |-  ( A. x ( x  =  A  ->  ( ch  ->  ps ) )  -> 
( A  e.  B  ->  ( ch  ->  E. x ps ) ) )
83, 4, 7sylc 62 1  |-  ( ph  ->  ( ch  ->  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  rspcimedv  2832  fihashf1rn  10702
  Copyright terms: Public domain W3C validator