ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcdv Unicode version

Theorem rspcdv 2833
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1  |-  ( ph  ->  A  e.  B )
rspcdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rspcdv  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcdv
StepHypRef Expression
1 rspcdv.1 . 2  |-  ( ph  ->  A  e.  B )
2 rspcdv.2 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
32biimpd 143 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
41, 3rspcimdv 2831 1  |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  ralxfrd  4440  prloc  7432  zindd  9309
  Copyright terms: Public domain W3C validator