ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimdv Unicode version

Theorem spcimdv 2864
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1  |-  ( ph  ->  A  e.  B )
spcimdv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
spcimdv  |-  ( ph  ->  ( A. x ps 
->  ch ) )
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem spcimdv
StepHypRef Expression
1 spcimdv.2 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( ps  ->  ch ) )
21ex 115 . . 3  |-  ( ph  ->  ( x  =  A  ->  ( ps  ->  ch ) ) )
32alrimiv 1898 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  ( ps  ->  ch ) ) )
4 spcimdv.1 . 2  |-  ( ph  ->  A  e.  B )
5 nfv 1552 . . 3  |-  F/ x ch
6 nfcv 2350 . . 3  |-  F/_ x A
75, 6spcimgft 2856 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ch ) )  -> 
( A  e.  B  ->  ( A. x ps 
->  ch ) ) )
83, 4, 7sylc 62 1  |-  ( ph  ->  ( A. x ps 
->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  spcdv  2865  rspcimdv  2885
  Copyright terms: Public domain W3C validator