ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcedv Unicode version

Theorem spcedv 2853
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
spcedv.1  |-  ( ph  ->  X  e.  _V )
spcedv.2  |-  ( ph  ->  ch )
spcedv.3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
spcedv  |-  ( ph  ->  E. x ps )
Distinct variable groups:    x, X    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem spcedv
StepHypRef Expression
1 spcedv.1 . 2  |-  ( ph  ->  X  e.  _V )
2 spcedv.2 . 2  |-  ( ph  ->  ch )
3 spcedv.3 . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2852 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  fprodseq  11748  gsumval2  13040
  Copyright terms: Public domain W3C validator