ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcedv Unicode version

Theorem spcedv 2862
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
spcedv.1  |-  ( ph  ->  X  e.  _V )
spcedv.2  |-  ( ph  ->  ch )
spcedv.3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
spcedv  |-  ( ph  ->  E. x ps )
Distinct variable groups:    x, X    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem spcedv
StepHypRef Expression
1 spcedv.1 . 2  |-  ( ph  ->  X  e.  _V )
2 spcedv.2 . 2  |-  ( ph  ->  ch )
3 spcedv.3 . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2861 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  fprodseq  11894  gsumval2  13229
  Copyright terms: Public domain W3C validator