ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcedv Unicode version

Theorem spcedv 2827
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
spcedv.1  |-  ( ph  ->  X  e.  _V )
spcedv.2  |-  ( ph  ->  ch )
spcedv.3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
spcedv  |-  ( ph  ->  E. x ps )
Distinct variable groups:    x, X    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem spcedv
StepHypRef Expression
1 spcedv.1 . 2  |-  ( ph  ->  X  e.  _V )
2 spcedv.2 . 2  |-  ( ph  ->  ch )
3 spcedv.3 . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2826 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740
This theorem is referenced by:  fprodseq  11591
  Copyright terms: Public domain W3C validator