Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 |
Ref | Expression |
---|---|
spcegv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2299 | . 2 | |
2 | nfv 1508 | . 2 | |
3 | spcgv.1 | . 2 | |
4 | 1, 2, 3 | spcegf 2795 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: spcedv 2801 spcev 2807 elabd 2857 eqeu 2882 absneu 3633 elunii 3779 axpweq 4134 euotd 4216 brcogw 4757 opeldmg 4793 breldmg 4794 dmsnopg 5059 dff3im 5614 elunirn 5718 unielxp 6124 op1steq 6129 tfr0dm 6271 tfrlemibxssdm 6276 tfrlemiex 6280 tfr1onlembxssdm 6292 tfr1onlemex 6296 tfrcllembxssdm 6305 tfrcllemex 6309 frecabcl 6348 ertr 6497 f1oen3g 6701 f1dom2g 6703 f1domg 6705 dom3d 6721 en1 6746 phpelm 6813 isinfinf 6844 ordiso 6982 djudom 7039 difinfsn 7046 ctm 7055 enumct 7061 djudoml 7156 djudomr 7157 cc2lem 7188 recexnq 7312 ltexprlemrl 7532 ltexprlemru 7534 recexprlemm 7546 recexprlemloc 7553 recexprlem1ssl 7555 recexprlem1ssu 7556 axpre-suploclemres 7823 frecuzrdgtcl 10320 frecuzrdgfunlem 10327 fihasheqf1oi 10673 zfz1isolem1 10722 climeu 11204 fsum3 11295 eltg3 12527 uptx 12744 xblm 12887 bj-2inf 13584 subctctexmid 13644 |
Copyright terms: Public domain | W3C validator |