ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegv Unicode version

Theorem spcegv 2849
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
spcgv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcegv  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem spcegv
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ x A
2 nfv 1539 . 2  |-  F/ x ps
3 spcgv.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3spcegf 2844 1  |-  ( A  e.  V  ->  ( ps  ->  E. x ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  spcedv  2850  spcev  2856  elabd  2906  eqeu  2931  absneu  3691  elunii  3841  axpweq  4201  euotd  4284  brcogw  4832  opeldmg  4868  breldmg  4869  dmsnopg  5138  dff3im  5704  elunirn  5810  unielxp  6229  op1steq  6234  tfr0dm  6377  tfrlemibxssdm  6382  tfrlemiex  6386  tfr1onlembxssdm  6398  tfr1onlemex  6402  tfrcllembxssdm  6411  tfrcllemex  6415  frecabcl  6454  ertr  6604  f1oen3g  6810  f1dom2g  6812  f1domg  6814  dom3d  6830  en1  6855  phpelm  6924  isinfinf  6955  ordiso  7097  djudom  7154  difinfsn  7161  ctm  7170  enumct  7176  djudoml  7281  djudomr  7282  cc2lem  7328  recexnq  7452  ltexprlemrl  7672  ltexprlemru  7674  recexprlemm  7686  recexprlemloc  7693  recexprlem1ssl  7695  recexprlem1ssu  7696  axpre-suploclemres  7963  frecuzrdgtcl  10486  frecuzrdgfunlem  10493  fihasheqf1oi  10861  zfz1isolem1  10914  climeu  11442  fsum3  11533  uzwodc  12177  gsumfzval  12977  eltg3  14236  uptx  14453  xblm  14596  2lgslem1  15248  bj-2inf  15500  subctctexmid  15561
  Copyright terms: Public domain W3C validator