![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
spcegv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
3 | spcgv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | spcegf 2844 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: spcedv 2850 spcev 2856 elabd 2906 eqeu 2931 absneu 3691 elunii 3841 axpweq 4201 euotd 4284 brcogw 4832 opeldmg 4868 breldmg 4869 dmsnopg 5138 dff3im 5704 elunirn 5810 unielxp 6229 op1steq 6234 tfr0dm 6377 tfrlemibxssdm 6382 tfrlemiex 6386 tfr1onlembxssdm 6398 tfr1onlemex 6402 tfrcllembxssdm 6411 tfrcllemex 6415 frecabcl 6454 ertr 6604 f1oen3g 6810 f1dom2g 6812 f1domg 6814 dom3d 6830 en1 6855 phpelm 6924 isinfinf 6955 ordiso 7097 djudom 7154 difinfsn 7161 ctm 7170 enumct 7176 djudoml 7281 djudomr 7282 cc2lem 7328 recexnq 7452 ltexprlemrl 7672 ltexprlemru 7674 recexprlemm 7686 recexprlemloc 7693 recexprlem1ssl 7695 recexprlem1ssu 7696 axpre-suploclemres 7963 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 fihasheqf1oi 10861 zfz1isolem1 10914 climeu 11442 fsum3 11533 uzwodc 12177 gsumfzval 12977 eltg3 14236 uptx 14453 xblm 14596 2lgslem1 15248 bj-2inf 15500 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |