| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 |
|
| Ref | Expression |
|---|---|
| spcegv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. 2
| |
| 2 | nfv 1542 |
. 2
| |
| 3 | spcgv.1 |
. 2
| |
| 4 | 1, 2, 3 | spcegf 2847 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: spcedv 2853 spcev 2859 elabd 2909 eqeu 2934 absneu 3695 elunii 3845 axpweq 4205 euotd 4288 brcogw 4836 opeldmg 4872 breldmg 4873 dmsnopg 5142 dff3im 5710 elunirn 5816 unielxp 6241 op1steq 6246 tfr0dm 6389 tfrlemibxssdm 6394 tfrlemiex 6398 tfr1onlembxssdm 6410 tfr1onlemex 6414 tfrcllembxssdm 6423 tfrcllemex 6427 frecabcl 6466 ertr 6616 f1oen3g 6822 f1dom2g 6824 f1domg 6826 dom3d 6842 en1 6867 phpelm 6936 isinfinf 6967 ordiso 7111 djudom 7168 difinfsn 7175 ctm 7184 enumct 7190 djudoml 7302 djudomr 7303 cc2lem 7349 recexnq 7474 ltexprlemrl 7694 ltexprlemru 7696 recexprlemm 7708 recexprlemloc 7715 recexprlem1ssl 7717 recexprlem1ssu 7718 axpre-suploclemres 7985 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 fihasheqf1oi 10896 zfz1isolem1 10949 climeu 11478 fsum3 11569 uzwodc 12229 gsumfzval 13093 eltg3 14377 uptx 14594 xblm 14737 2lgslem1 15416 bj-2inf 15668 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |