| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 |
|
| Ref | Expression |
|---|---|
| spcegv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. 2
| |
| 2 | nfv 1542 |
. 2
| |
| 3 | spcgv.1 |
. 2
| |
| 4 | 1, 2, 3 | spcegf 2847 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: spcedv 2853 spcev 2859 elabd 2909 eqeu 2934 absneu 3694 elunii 3844 axpweq 4204 euotd 4287 brcogw 4835 opeldmg 4871 breldmg 4872 dmsnopg 5141 dff3im 5707 elunirn 5813 unielxp 6232 op1steq 6237 tfr0dm 6380 tfrlemibxssdm 6385 tfrlemiex 6389 tfr1onlembxssdm 6401 tfr1onlemex 6405 tfrcllembxssdm 6414 tfrcllemex 6418 frecabcl 6457 ertr 6607 f1oen3g 6813 f1dom2g 6815 f1domg 6817 dom3d 6833 en1 6858 phpelm 6927 isinfinf 6958 ordiso 7102 djudom 7159 difinfsn 7166 ctm 7175 enumct 7181 djudoml 7286 djudomr 7287 cc2lem 7333 recexnq 7457 ltexprlemrl 7677 ltexprlemru 7679 recexprlemm 7691 recexprlemloc 7698 recexprlem1ssl 7700 recexprlem1ssu 7701 axpre-suploclemres 7968 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 fihasheqf1oi 10879 zfz1isolem1 10932 climeu 11461 fsum3 11552 uzwodc 12204 gsumfzval 13034 eltg3 14293 uptx 14510 xblm 14653 2lgslem1 15332 bj-2inf 15584 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |