| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 |
|
| Ref | Expression |
|---|---|
| spcegv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfv 1551 |
. 2
| |
| 3 | spcgv.1 |
. 2
| |
| 4 | 1, 2, 3 | spcegf 2856 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: spcedv 2862 spcev 2868 elabd 2918 eqeu 2943 absneu 3705 elunii 3855 axpweq 4216 euotd 4300 brcogw 4848 opeldmg 4884 breldmg 4885 dmsnopg 5155 dff3im 5727 elunirn 5837 unielxp 6262 op1steq 6267 tfr0dm 6410 tfrlemibxssdm 6415 tfrlemiex 6419 tfr1onlembxssdm 6431 tfr1onlemex 6435 tfrcllembxssdm 6444 tfrcllemex 6448 frecabcl 6487 ertr 6637 f1oen4g 6845 f1dom4g 6846 f1oen3g 6847 f1dom2g 6849 f1domg 6851 dom3d 6867 en1 6893 en2 6914 phpelm 6965 isinfinf 6996 ordiso 7140 djudom 7197 difinfsn 7204 ctm 7213 enumct 7219 djudoml 7333 djudomr 7334 cc2lem 7380 recexnq 7505 ltexprlemrl 7725 ltexprlemru 7727 recexprlemm 7739 recexprlemloc 7746 recexprlem1ssl 7748 recexprlem1ssu 7749 axpre-suploclemres 8016 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 fihasheqf1oi 10934 zfz1isolem1 10987 climeu 11640 fsum3 11731 uzwodc 12391 gsumfzval 13256 mplsubgfilemm 14493 eltg3 14562 uptx 14779 xblm 14922 2lgslem1 15601 bj-2inf 15911 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |