| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2egv | Unicode version | ||
| Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2egv.1 |
|
| Ref | Expression |
|---|---|
| spc2egv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2791 |
. . . 4
| |
| 2 | elisset 2791 |
. . . 4
| |
| 3 | 1, 2 | anim12i 338 |
. . 3
|
| 4 | eeanv 1961 |
. . 3
| |
| 5 | 3, 4 | sylibr 134 |
. 2
|
| 6 | spc2egv.1 |
. . . 4
| |
| 7 | 6 | biimprcd 160 |
. . 3
|
| 8 | 7 | 2eximdv 1906 |
. 2
|
| 9 | 5, 8 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: spc2ev 2876 th3q 6750 addnnnq0 7597 mulnnnq0 7598 addsrpr 7893 mulsrpr 7894 |
| Copyright terms: Public domain | W3C validator |