![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcedv | GIF version |
Description: Existential specialization, using implicit substitution, deduction version. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
spcedv.1 | ⊢ (𝜑 → 𝑋 ∈ V) |
spcedv.2 | ⊢ (𝜑 → 𝜒) |
spcedv.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
spcedv | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcedv.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
2 | spcedv.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | spcedv.3 | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
4 | 3 | spcegv 2848 | . 2 ⊢ (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓)) |
5 | 1, 2, 4 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: fprodseq 11726 gsumval2 12980 |
Copyright terms: Public domain | W3C validator |