ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbcd Unicode version

Theorem spesbcd 3037
Description: form of spsbc 2962. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1  |-  ( ph  ->  [. A  /  x ]. ps )
Assertion
Ref Expression
spesbcd  |-  ( ph  ->  E. x ps )

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2  |-  ( ph  ->  [. A  /  x ]. ps )
2 spesbc 3036 . 2  |-  ( [. A  /  x ]. ps  ->  E. x ps )
31, 2syl 14 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1480   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952
This theorem is referenced by:  euotd  4232  bj-sels  13796
  Copyright terms: Public domain W3C validator