ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbcd Unicode version

Theorem spesbcd 3072
Description: form of spsbc 2997. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
spesbcd.1  |-  ( ph  ->  [. A  /  x ]. ps )
Assertion
Ref Expression
spesbcd  |-  ( ph  ->  E. x ps )

Proof of Theorem spesbcd
StepHypRef Expression
1 spesbcd.1 . 2  |-  ( ph  ->  [. A  /  x ]. ps )
2 spesbc 3071 . 2  |-  ( [. A  /  x ]. ps  ->  E. x ps )
31, 2syl 14 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1503   [.wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-sbc 2986
This theorem is referenced by:  euotd  4283  bj-sels  15406
  Copyright terms: Public domain W3C validator