ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euotd Unicode version

Theorem euotd 4232
Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
Hypotheses
Ref Expression
euotd.1  |-  ( ph  ->  A  e.  _V )
euotd.2  |-  ( ph  ->  B  e.  _V )
euotd.3  |-  ( ph  ->  C  e.  _V )
euotd.4  |-  ( ph  ->  ( ps  <->  ( a  =  A  /\  b  =  B  /\  c  =  C ) ) )
Assertion
Ref Expression
euotd  |-  ( ph  ->  E! x E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps ) )
Distinct variable groups:    a, b, c, x, A    B, a,
b, c, x    C, a, b, c, x    ph, a,
b, c, x
Allowed substitution hints:    ps( x, a, b, c)

Proof of Theorem euotd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euotd.1 . . . 4  |-  ( ph  ->  A  e.  _V )
2 euotd.2 . . . 4  |-  ( ph  ->  B  e.  _V )
3 euotd.3 . . . 4  |-  ( ph  ->  C  e.  _V )
4 otexg 4208 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  <. A ,  B ,  C >.  e. 
_V )
51, 2, 3, 4syl3anc 1228 . . 3  |-  ( ph  -> 
<. A ,  B ,  C >.  e.  _V )
6 euotd.4 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ps  <->  ( a  =  A  /\  b  =  B  /\  c  =  C ) ) )
76biimpa 294 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( a  =  A  /\  b  =  B  /\  c  =  C ) )
8 vex 2729 . . . . . . . . . . . . 13  |-  a  e. 
_V
9 vex 2729 . . . . . . . . . . . . 13  |-  b  e. 
_V
10 vex 2729 . . . . . . . . . . . . 13  |-  c  e. 
_V
118, 9, 10otth 4220 . . . . . . . . . . . 12  |-  ( <.
a ,  b ,  c >.  =  <. A ,  B ,  C >.  <-> 
( a  =  A  /\  b  =  B  /\  c  =  C ) )
127, 11sylibr 133 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  -> 
<. a ,  b ,  c >.  =  <. A ,  B ,  C >. )
1312eqeq2d 2177 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( x  =  <. a ,  b ,  c
>. 
<->  x  =  <. A ,  B ,  C >. ) )
1413biimpd 143 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( x  =  <. a ,  b ,  c
>.  ->  x  =  <. A ,  B ,  C >. ) )
1514impancom 258 . . . . . . . 8  |-  ( (
ph  /\  x  =  <. a ,  b ,  c >. )  ->  ( ps  ->  x  =  <. A ,  B ,  C >. ) )
1615expimpd 361 . . . . . . 7  |-  ( ph  ->  ( ( x  = 
<. a ,  b ,  c >.  /\  ps )  ->  x  =  <. A ,  B ,  C >. ) )
1716exlimdv 1807 . . . . . 6  |-  ( ph  ->  ( E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  ->  x  =  <. A ,  B ,  C >. ) )
1817exlimdvv 1885 . . . . 5  |-  ( ph  ->  ( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  ->  x  =  <. A ,  B ,  C >. ) )
19 tru 1347 . . . . . . . . . . 11  |- T.
202adantr 274 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  =  A )  ->  B  e.  _V )
213ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  =  A )  /\  b  =  B )  ->  C  e.  _V )
22 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  -> 
( a  =  A  /\  b  =  B  /\  c  =  C ) )
2322, 11sylibr 133 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  ->  <. a ,  b ,  c >.  =  <. A ,  B ,  C >. )
2423eqcomd 2171 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  ->  <. A ,  B ,  C >.  =  <. a ,  b ,  c
>. )
256biimpar 295 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  ->  ps )
2624, 25jca 304 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  -> 
( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps ) )
27 a1tru 1359 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  -> T.  )
2826, 272thd 174 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  =  A  /\  b  =  B  /\  c  =  C ) )  -> 
( ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )  <-> T.  ) )
29283anassrs 1219 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  =  A )  /\  b  =  B
)  /\  c  =  C )  ->  (
( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <-> T.  )
)
3021, 29sbcied 2987 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  =  A )  /\  b  =  B )  ->  ( [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <-> T.  )
)
3120, 30sbcied 2987 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  =  A )  ->  ( [. B  /  b ]. [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <-> T.  )
)
321, 31sbcied 2987 . . . . . . . . . . 11  |-  ( ph  ->  ( [. A  / 
a ]. [. B  / 
b ]. [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )  <-> T.  ) )
3319, 32mpbiri 167 . . . . . . . . . 10  |-  ( ph  ->  [. A  /  a ]. [. B  /  b ]. [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps ) )
3433spesbcd 3037 . . . . . . . . 9  |-  ( ph  ->  E. a [. B  /  b ]. [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps ) )
35 nfcv 2308 . . . . . . . . . 10  |-  F/_ b B
36 nfsbc1v 2969 . . . . . . . . . . 11  |-  F/ b
[. B  /  b ]. [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )
3736nfex 1625 . . . . . . . . . 10  |-  F/ b E. a [. B  /  b ]. [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )
38 sbceq1a 2960 . . . . . . . . . . 11  |-  ( b  =  B  ->  ( [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <->  [. B  / 
b ]. [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
3938exbidv 1813 . . . . . . . . . 10  |-  ( b  =  B  ->  ( E. a [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )  <->  E. a [. B  / 
b ]. [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
4035, 37, 39spcegf 2809 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( E. a [. B  / 
b ]. [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )  ->  E. b E. a [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps ) ) )
412, 34, 40sylc 62 . . . . . . . 8  |-  ( ph  ->  E. b E. a [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps ) )
42 nfcv 2308 . . . . . . . . 9  |-  F/_ c C
43 nfsbc1v 2969 . . . . . . . . . . 11  |-  F/ c
[. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )
4443nfex 1625 . . . . . . . . . 10  |-  F/ c E. a [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )
4544nfex 1625 . . . . . . . . 9  |-  F/ c E. b E. a [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )
46 sbceq1a 2960 . . . . . . . . . 10  |-  ( c  =  C  ->  (
( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <->  [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
47462exbidv 1856 . . . . . . . . 9  |-  ( c  =  C  ->  ( E. b E. a (
<. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  <->  E. b E. a [. C  / 
c ]. ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
4842, 45, 47spcegf 2809 . . . . . . . 8  |-  ( C  e.  _V  ->  ( E. b E. a [. C  /  c ]. ( <. A ,  B ,  C >.  =  <. a ,  b ,  c
>.  /\  ps )  ->  E. c E. b E. a ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
493, 41, 48sylc 62 . . . . . . 7  |-  ( ph  ->  E. c E. b E. a ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
)
50 excom13 1677 . . . . . . 7  |-  ( E. c E. b E. a ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )  <->  E. a E. b E. c ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
)
5149, 50sylib 121 . . . . . 6  |-  ( ph  ->  E. a E. b E. c ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
)
52 eqeq1 2172 . . . . . . . 8  |-  ( x  =  <. A ,  B ,  C >.  ->  ( x  =  <. a ,  b ,  c >.  <->  <. A ,  B ,  C >.  = 
<. a ,  b ,  c >. ) )
5352anbi1d 461 . . . . . . 7  |-  ( x  =  <. A ,  B ,  C >.  ->  ( ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  ( <. A ,  B ,  C >.  =  <. a ,  b ,  c >.  /\  ps ) ) )
54533exbidv 1857 . . . . . 6  |-  ( x  =  <. A ,  B ,  C >.  ->  ( E. a E. b E. c ( x  = 
<. a ,  b ,  c >.  /\  ps )  <->  E. a E. b E. c ( <. A ,  B ,  C >.  = 
<. a ,  b ,  c >.  /\  ps )
) )
5551, 54syl5ibrcom 156 . . . . 5  |-  ( ph  ->  ( x  =  <. A ,  B ,  C >.  ->  E. a E. b E. c ( x  = 
<. a ,  b ,  c >.  /\  ps )
) )
5618, 55impbid 128 . . . 4  |-  ( ph  ->  ( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  <. A ,  B ,  C >. ) )
5756alrimiv 1862 . . 3  |-  ( ph  ->  A. x ( E. a E. b E. c ( x  = 
<. a ,  b ,  c >.  /\  ps )  <->  x  =  <. A ,  B ,  C >. ) )
58 eqeq2 2175 . . . . . 6  |-  ( y  =  <. A ,  B ,  C >.  ->  ( x  =  y  <->  x  =  <. A ,  B ,  C >. ) )
5958bibi2d 231 . . . . 5  |-  ( y  =  <. A ,  B ,  C >.  ->  ( ( E. a E. b E. c ( x  = 
<. a ,  b ,  c >.  /\  ps )  <->  x  =  y )  <->  ( E. a E. b E. c
( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  <. A ,  B ,  C >. ) ) )
6059albidv 1812 . . . 4  |-  ( y  =  <. A ,  B ,  C >.  ->  ( A. x ( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  y )  <->  A. x
( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  <. A ,  B ,  C >. ) ) )
6160spcegv 2814 . . 3  |-  ( <. A ,  B ,  C >.  e.  _V  ->  ( A. x ( E. a E. b E. c ( x  = 
<. a ,  b ,  c >.  /\  ps )  <->  x  =  <. A ,  B ,  C >. )  ->  E. y A. x ( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  y ) ) )
625, 57, 61sylc 62 . 2  |-  ( ph  ->  E. y A. x
( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  y ) )
63 df-eu 2017 . 2  |-  ( E! x E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  E. y A. x ( E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps )  <->  x  =  y ) )
6462, 63sylibr 133 1  |-  ( ph  ->  E! x E. a E. b E. c ( x  =  <. a ,  b ,  c
>.  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968   A.wal 1341    = wceq 1343   T. wtru 1344   E.wex 1480   E!weu 2014    e. wcel 2136   _Vcvv 2726   [.wsbc 2951   <.cotp 3580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-ot 3586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator