![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spesbcd | GIF version |
Description: form of spsbc 2865. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spesbcd.1 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
spesbcd | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcd.1 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | spesbc 2938 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1433 [wsbc 2854 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-rex 2376 df-v 2635 df-sbc 2855 |
This theorem is referenced by: euotd 4105 bj-sels 12517 |
Copyright terms: Public domain | W3C validator |