![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spesbcd | GIF version |
Description: form of spsbc 3001. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
spesbcd.1 | ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
Ref | Expression |
---|---|
spesbcd | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spesbcd.1 | . 2 ⊢ (𝜑 → [𝐴 / 𝑥]𝜓) | |
2 | spesbc 3075 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 → ∃𝑥𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1506 [wsbc 2989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 |
This theorem is referenced by: euotd 4287 bj-sels 15527 |
Copyright terms: Public domain | W3C validator |