Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sels Unicode version

Theorem bj-sels 16049
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
bj-sels  |-  ( A  e.  V  ->  E. x  A  e.  x )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-sels
StepHypRef Expression
1 snidg 3672 . . 3  |-  ( A  e.  V  ->  A  e.  { A } )
2 bj-snexg 16047 . . . . 5  |-  ( A  e.  V  ->  { A }  e.  _V )
3 sbcel2g 3122 . . . . 5  |-  ( { A }  e.  _V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  [_ { A }  /  x ]_ x ) )
42, 3syl 14 . . . 4  |-  ( A  e.  V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  [_ { A }  /  x ]_ x
) )
5 csbvarg 3129 . . . . . 6  |-  ( { A }  e.  _V  ->  [_ { A }  /  x ]_ x  =  { A } )
62, 5syl 14 . . . . 5  |-  ( A  e.  V  ->  [_ { A }  /  x ]_ x  =  { A } )
76eleq2d 2277 . . . 4  |-  ( A  e.  V  ->  ( A  e.  [_ { A }  /  x ]_ x  <->  A  e.  { A }
) )
84, 7bitrd 188 . . 3  |-  ( A  e.  V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  { A }
) )
91, 8mpbird 167 . 2  |-  ( A  e.  V  ->  [. { A }  /  x ]. A  e.  x
)
109spesbcd 3093 1  |-  ( A  e.  V  ->  E. x  A  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   [.wsbc 3005   [_csb 3101   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-pr 4269  ax-bdor 15951  ax-bdeq 15955  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator