Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | Unicode version |
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
Ref | Expression |
---|---|
bj-sels |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3600 | . . 3 | |
2 | bj-snexg 13655 | . . . . 5 | |
3 | sbcel2g 3062 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | csbvarg 3069 | . . . . . 6 | |
6 | 2, 5 | syl 14 | . . . . 5 |
7 | 6 | eleq2d 2234 | . . . 4 |
8 | 4, 7 | bitrd 187 | . . 3 |
9 | 1, 8 | mpbird 166 | . 2 |
10 | 9 | spesbcd 3033 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1342 wex 1479 wcel 2135 cvv 2722 wsbc 2947 csb 3041 csn 3571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-pr 4182 ax-bdor 13559 ax-bdeq 13563 ax-bdsep 13627 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-v 2724 df-sbc 2948 df-csb 3042 df-un 3116 df-sn 3577 df-pr 3578 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |