Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | Unicode version |
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
Ref | Expression |
---|---|
bj-sels |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3605 | . . 3 | |
2 | bj-snexg 13794 | . . . . 5 | |
3 | sbcel2g 3066 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | csbvarg 3073 | . . . . . 6 | |
6 | 2, 5 | syl 14 | . . . . 5 |
7 | 6 | eleq2d 2236 | . . . 4 |
8 | 4, 7 | bitrd 187 | . . 3 |
9 | 1, 8 | mpbird 166 | . 2 |
10 | 9 | spesbcd 3037 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 wsbc 2951 csb 3045 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-pr 4187 ax-bdor 13698 ax-bdeq 13702 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |