| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sels | Unicode version | ||
| Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-sels |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 3651 |
. . 3
| |
| 2 | bj-snexg 15558 |
. . . . 5
| |
| 3 | sbcel2g 3105 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | csbvarg 3112 |
. . . . . 6
| |
| 6 | 2, 5 | syl 14 |
. . . . 5
|
| 7 | 6 | eleq2d 2266 |
. . . 4
|
| 8 | 4, 7 | bitrd 188 |
. . 3
|
| 9 | 1, 8 | mpbird 167 |
. 2
|
| 10 | 9 | spesbcd 3076 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-pr 4242 ax-bdor 15462 ax-bdeq 15466 ax-bdsep 15530 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |