ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbc Unicode version

Theorem spesbc 3075
Description: Existence form of spsbc 3001. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc  |-  ( [. A  /  x ]. ph  ->  E. x ph )

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 2998 . . 3  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
2 rspesbca 3074 . . 3  |-  ( ( A  e.  _V  /\  [. A  /  x ]. ph )  ->  E. x  e.  _V  ph )
31, 2mpancom 422 . 2  |-  ( [. A  /  x ]. ph  ->  E. x  e.  _V  ph )
4 rexv 2781 . 2  |-  ( E. x  e.  _V  ph  <->  E. x ph )
53, 4sylib 122 1  |-  ( [. A  /  x ]. ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1506    e. wcel 2167   E.wrex 2476   _Vcvv 2763   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990
This theorem is referenced by:  spesbcd  3076  opelopabsb  4294
  Copyright terms: Public domain W3C validator