ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbc Unicode version

Theorem spesbc 3084
Description: Existence form of spsbc 3010. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc  |-  ( [. A  /  x ]. ph  ->  E. x ph )

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3007 . . 3  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
2 rspesbca 3083 . . 3  |-  ( ( A  e.  _V  /\  [. A  /  x ]. ph )  ->  E. x  e.  _V  ph )
31, 2mpancom 422 . 2  |-  ( [. A  /  x ]. ph  ->  E. x  e.  _V  ph )
4 rexv 2790 . 2  |-  ( E. x  e.  _V  ph  <->  E. x ph )
53, 4sylib 122 1  |-  ( [. A  /  x ]. ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1515    e. wcel 2176   E.wrex 2485   _Vcvv 2772   [.wsbc 2998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sbc 2999
This theorem is referenced by:  spesbcd  3085  opelopabsb  4306
  Copyright terms: Public domain W3C validator