Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spesbc | Unicode version |
Description: Existence form of spsbc 2966. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
spesbc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2963 | . . 3 | |
2 | rspesbca 3039 | . . 3 | |
3 | 1, 2 | mpancom 420 | . 2 |
4 | rexv 2748 | . 2 | |
5 | 3, 4 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1485 wcel 2141 wrex 2449 cvv 2730 wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 |
This theorem is referenced by: spesbcd 3041 opelopabsb 4245 |
Copyright terms: Public domain | W3C validator |