ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spesbc Unicode version

Theorem spesbc 3115
Description: Existence form of spsbc 3040. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
spesbc  |-  ( [. A  /  x ]. ph  ->  E. x ph )

Proof of Theorem spesbc
StepHypRef Expression
1 sbcex 3037 . . 3  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
2 rspesbca 3114 . . 3  |-  ( ( A  e.  _V  /\  [. A  /  x ]. ph )  ->  E. x  e.  _V  ph )
31, 2mpancom 422 . 2  |-  ( [. A  /  x ]. ph  ->  E. x  e.  _V  ph )
4 rexv 2818 . 2  |-  ( E. x  e.  _V  ph  <->  E. x ph )
53, 4sylib 122 1  |-  ( [. A  /  x ]. ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029
This theorem is referenced by:  spesbcd  3116  opelopabsb  4348
  Copyright terms: Public domain W3C validator