ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbr Unicode version

Theorem ssbr 4126
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr  |-  ( A 
C_  B  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbr
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  B  ->  A  C_  B )
21ssbrd 4125 1  |-  ( A 
C_  B  ->  ( C A D  ->  C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3197   class class class wbr 4082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-br 4083
This theorem is referenced by:  ssrelrn  4913
  Copyright terms: Public domain W3C validator