ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbr GIF version

Theorem ssbr 4091
Description: Implication from a subclass relationship of binary relations. (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbr
StepHypRef Expression
1 id 19 . 2 (𝐴𝐵𝐴𝐵)
21ssbrd 4090 1 (𝐴𝐵 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3167   class class class wbr 4047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180  df-br 4048
This theorem is referenced by:  ssrelrn  4874
  Copyright terms: Public domain W3C validator