ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrelrn Unicode version

Theorem ssrelrn 4913
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
Assertion
Ref Expression
ssrelrn  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
Distinct variable groups:    A, a    B, a    R, a    Y, a

Proof of Theorem ssrelrn
StepHypRef Expression
1 elrng 4912 . . . . 5  |-  ( Y  e.  ran  R  -> 
( Y  e.  ran  R  <->  E. a  a R Y ) )
2 ssbr 4126 . . . . . . . . . . 11  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
a ( A  X.  B ) Y ) )
3 brxp 4749 . . . . . . . . . . . 12  |-  ( a ( A  X.  B
) Y  <->  ( a  e.  A  /\  Y  e.  B ) )
43simplbi 274 . . . . . . . . . . 11  |-  ( a ( A  X.  B
) Y  ->  a  e.  A )
52, 4syl6 33 . . . . . . . . . 10  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
a  e.  A ) )
65ancrd 326 . . . . . . . . 9  |-  ( R 
C_  ( A  X.  B )  ->  (
a R Y  -> 
( a  e.  A  /\  a R Y ) ) )
76adantl 277 . . . . . . . 8  |-  ( ( Y  e.  ran  R  /\  R  C_  ( A  X.  B ) )  ->  ( a R Y  ->  ( a  e.  A  /\  a R Y ) ) )
87eximdv 1926 . . . . . . 7  |-  ( ( Y  e.  ran  R  /\  R  C_  ( A  X.  B ) )  ->  ( E. a 
a R Y  ->  E. a ( a  e.  A  /\  a R Y ) ) )
98ex 115 . . . . . 6  |-  ( Y  e.  ran  R  -> 
( R  C_  ( A  X.  B )  -> 
( E. a  a R Y  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
109com23 78 . . . . 5  |-  ( Y  e.  ran  R  -> 
( E. a  a R Y  ->  ( R  C_  ( A  X.  B )  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
111, 10sylbid 150 . . . 4  |-  ( Y  e.  ran  R  -> 
( Y  e.  ran  R  ->  ( R  C_  ( A  X.  B
)  ->  E. a
( a  e.  A  /\  a R Y ) ) ) )
1211pm2.43i 49 . . 3  |-  ( Y  e.  ran  R  -> 
( R  C_  ( A  X.  B )  ->  E. a ( a  e.  A  /\  a R Y ) ) )
1312impcom 125 . 2  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a ( a  e.  A  /\  a R Y ) )
14 df-rex 2514 . 2  |-  ( E. a  e.  A  a R Y  <->  E. a
( a  e.  A  /\  a R Y ) )
1513, 14sylibr 134 1  |-  ( ( R  C_  ( A  X.  B )  /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1538    e. wcel 2200   E.wrex 2509    C_ wss 3197   class class class wbr 4082    X. cxp 4716   ran crn 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729
This theorem is referenced by:  incistruhgr  15884
  Copyright terms: Public domain W3C validator