| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrelrn | Unicode version | ||
| Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| ssrelrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrng 4912 |
. . . . 5
| |
| 2 | ssbr 4126 |
. . . . . . . . . . 11
| |
| 3 | brxp 4749 |
. . . . . . . . . . . 12
| |
| 4 | 3 | simplbi 274 |
. . . . . . . . . . 11
|
| 5 | 2, 4 | syl6 33 |
. . . . . . . . . 10
|
| 6 | 5 | ancrd 326 |
. . . . . . . . 9
|
| 7 | 6 | adantl 277 |
. . . . . . . 8
|
| 8 | 7 | eximdv 1926 |
. . . . . . 7
|
| 9 | 8 | ex 115 |
. . . . . 6
|
| 10 | 9 | com23 78 |
. . . . 5
|
| 11 | 1, 10 | sylbid 150 |
. . . 4
|
| 12 | 11 | pm2.43i 49 |
. . 3
|
| 13 | 12 | impcom 125 |
. 2
|
| 14 | df-rex 2514 |
. 2
| |
| 15 | 13, 14 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: incistruhgr 15884 |
| Copyright terms: Public domain | W3C validator |