| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrelrn | Unicode version | ||
| Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| ssrelrn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrng 4874 |
. . . . 5
| |
| 2 | ssbr 4092 |
. . . . . . . . . . 11
| |
| 3 | brxp 4711 |
. . . . . . . . . . . 12
| |
| 4 | 3 | simplbi 274 |
. . . . . . . . . . 11
|
| 5 | 2, 4 | syl6 33 |
. . . . . . . . . 10
|
| 6 | 5 | ancrd 326 |
. . . . . . . . 9
|
| 7 | 6 | adantl 277 |
. . . . . . . 8
|
| 8 | 7 | eximdv 1904 |
. . . . . . 7
|
| 9 | 8 | ex 115 |
. . . . . 6
|
| 10 | 9 | com23 78 |
. . . . 5
|
| 11 | 1, 10 | sylbid 150 |
. . . 4
|
| 12 | 11 | pm2.43i 49 |
. . 3
|
| 13 | 12 | impcom 125 |
. 2
|
| 14 | df-rex 2491 |
. 2
| |
| 15 | 13, 14 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-cnv 4688 df-dm 4690 df-rn 4691 |
| This theorem is referenced by: incistruhgr 15736 |
| Copyright terms: Public domain | W3C validator |