ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri Unicode version

Theorem ssbri 4088
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1  |-  A  C_  B
Assertion
Ref Expression
ssbri  |-  ( C A D  ->  C B D )

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4  |-  A  C_  B
21a1i 9 . . 3  |-  ( T. 
->  A  C_  B )
32ssbrd 4087 . 2  |-  ( T. 
->  ( C A D  ->  C B D ) )
43mptru 1382 1  |-  ( C A D  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   T. wtru 1374    C_ wss 3166   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-br 4045
This theorem is referenced by:  brel  4727  swoer  6648  swoord1  6649  swoord2  6650  ecopover  6720  ecopoverg  6723  endom  6854
  Copyright terms: Public domain W3C validator