ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri Unicode version

Theorem ssbri 4104
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1  |-  A  C_  B
Assertion
Ref Expression
ssbri  |-  ( C A D  ->  C B D )

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4  |-  A  C_  B
21a1i 9 . . 3  |-  ( T. 
->  A  C_  B )
32ssbrd 4102 . 2  |-  ( T. 
->  ( C A D  ->  C B D ) )
43mptru 1382 1  |-  ( C A D  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   T. wtru 1374    C_ wss 3174   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-br 4060
This theorem is referenced by:  brel  4745  swoer  6671  swoord1  6672  swoord2  6673  ecopover  6743  ecopoverg  6746  endom  6877
  Copyright terms: Public domain W3C validator