ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri Unicode version

Theorem ssbri 4062
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1  |-  A  C_  B
Assertion
Ref Expression
ssbri  |-  ( C A D  ->  C B D )

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4  |-  A  C_  B
21a1i 9 . . 3  |-  ( T. 
->  A  C_  B )
32ssbrd 4061 . 2  |-  ( T. 
->  ( C A D  ->  C B D ) )
43mptru 1373 1  |-  ( C A D  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   T. wtru 1365    C_ wss 3144   class class class wbr 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157  df-br 4019
This theorem is referenced by:  brel  4693  swoer  6581  swoord1  6582  swoord2  6583  ecopover  6651  ecopoverg  6654  endom  6781
  Copyright terms: Public domain W3C validator