ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri Unicode version

Theorem ssbri 4033
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1  |-  A  C_  B
Assertion
Ref Expression
ssbri  |-  ( C A D  ->  C B D )

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4  |-  A  C_  B
21a1i 9 . . 3  |-  ( T. 
->  A  C_  B )
32ssbrd 4032 . 2  |-  ( T. 
->  ( C A D  ->  C B D ) )
43mptru 1357 1  |-  ( C A D  ->  C B D )
Colors of variables: wff set class
Syntax hints:    -> wi 4   T. wtru 1349    C_ wss 3121   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-br 3990
This theorem is referenced by:  brel  4663  swoer  6541  swoord1  6542  swoord2  6543  ecopover  6611  ecopoverg  6614  endom  6741
  Copyright terms: Public domain W3C validator