Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssbrd | Unicode version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 |
Ref | Expression |
---|---|
ssbrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 | |
2 | 1 | sseld 3127 | . 2 |
3 | df-br 3966 | . 2 | |
4 | df-br 3966 | . 2 | |
5 | 2, 3, 4 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 wss 3102 cop 3563 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 df-br 3966 |
This theorem is referenced by: ssbri 4008 sess1 4297 brrelex12 4623 coss1 4740 coss2 4741 eqbrrdva 4755 ersym 6489 ertr 6492 |
Copyright terms: Public domain | W3C validator |