Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssbrd | Unicode version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 |
Ref | Expression |
---|---|
ssbrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 | |
2 | 1 | sseld 3141 | . 2 |
3 | df-br 3983 | . 2 | |
4 | df-br 3983 | . 2 | |
5 | 2, 3, 4 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-br 3983 |
This theorem is referenced by: ssbri 4026 sess1 4315 brrelex12 4642 coss1 4759 coss2 4760 eqbrrdva 4774 ersym 6513 ertr 6516 |
Copyright terms: Public domain | W3C validator |