| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssbrd | Unicode version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 |
|
| Ref | Expression |
|---|---|
| ssbrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 |
. . 3
| |
| 2 | 1 | sseld 3200 |
. 2
|
| 3 | df-br 4060 |
. 2
| |
| 4 | df-br 4060 |
. 2
| |
| 5 | 2, 3, 4 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-br 4060 |
| This theorem is referenced by: ssbr 4103 ssbri 4104 sess1 4402 brrelex12 4731 coss1 4851 coss2 4852 eqbrrdva 4866 ersym 6655 ertr 6658 subrguss 14113 znleval 14530 |
| Copyright terms: Public domain | W3C validator |