ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbrd Unicode version

Theorem ssbrd 4076
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssbrd  |-  ( ph  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3  |-  ( ph  ->  A  C_  B )
21sseld 3182 . 2  |-  ( ph  ->  ( <. C ,  D >.  e.  A  ->  <. C ,  D >.  e.  B ) )
3 df-br 4034 . 2  |-  ( C A D  <->  <. C ,  D >.  e.  A )
4 df-br 4034 . 2  |-  ( C B D  <->  <. C ,  D >.  e.  B )
52, 3, 43imtr4g 205 1  |-  ( ph  ->  ( C A D  ->  C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   <.cop 3625   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-br 4034
This theorem is referenced by:  ssbri  4077  sess1  4372  brrelex12  4701  coss1  4821  coss2  4822  eqbrrdva  4836  ersym  6604  ertr  6607  subrguss  13792  znleval  14209
  Copyright terms: Public domain W3C validator