ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbrd Unicode version

Theorem ssbrd 4032
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssbrd  |-  ( ph  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3  |-  ( ph  ->  A  C_  B )
21sseld 3146 . 2  |-  ( ph  ->  ( <. C ,  D >.  e.  A  ->  <. C ,  D >.  e.  B ) )
3 df-br 3990 . 2  |-  ( C A D  <->  <. C ,  D >.  e.  A )
4 df-br 3990 . 2  |-  ( C B D  <->  <. C ,  D >.  e.  B )
52, 3, 43imtr4g 204 1  |-  ( ph  ->  ( C A D  ->  C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-br 3990
This theorem is referenced by:  ssbri  4033  sess1  4322  brrelex12  4649  coss1  4766  coss2  4767  eqbrrdva  4781  ersym  6525  ertr  6528
  Copyright terms: Public domain W3C validator