ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbrd Unicode version

Theorem ssbrd 4007
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssbrd  |-  ( ph  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3  |-  ( ph  ->  A  C_  B )
21sseld 3127 . 2  |-  ( ph  ->  ( <. C ,  D >.  e.  A  ->  <. C ,  D >.  e.  B ) )
3 df-br 3966 . 2  |-  ( C A D  <->  <. C ,  D >.  e.  A )
4 df-br 3966 . 2  |-  ( C B D  <->  <. C ,  D >.  e.  B )
52, 3, 43imtr4g 204 1  |-  ( ph  ->  ( C A D  ->  C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128    C_ wss 3102   <.cop 3563   class class class wbr 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-in 3108  df-ss 3115  df-br 3966
This theorem is referenced by:  ssbri  4008  sess1  4297  brrelex12  4623  coss1  4740  coss2  4741  eqbrrdva  4755  ersym  6489  ertr  6492
  Copyright terms: Public domain W3C validator