ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbrd Unicode version

Theorem ssbrd 4087
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
ssbrd  |-  ( ph  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3  |-  ( ph  ->  A  C_  B )
21sseld 3192 . 2  |-  ( ph  ->  ( <. C ,  D >.  e.  A  ->  <. C ,  D >.  e.  B ) )
3 df-br 4045 . 2  |-  ( C A D  <->  <. C ,  D >.  e.  A )
4 df-br 4045 . 2  |-  ( C B D  <->  <. C ,  D >.  e.  B )
52, 3, 43imtr4g 205 1  |-  ( ph  ->  ( C A D  ->  C B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    C_ wss 3166   <.cop 3636   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-br 4045
This theorem is referenced by:  ssbri  4088  sess1  4384  brrelex12  4713  coss1  4833  coss2  4834  eqbrrdva  4848  ersym  6632  ertr  6635  subrguss  13998  znleval  14415
  Copyright terms: Public domain W3C validator