ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sscon Unicode version

Theorem sscon 3293
Description: Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
sscon  |-  ( A 
C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )

Proof of Theorem sscon
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21con3d 632 . . . 4  |-  ( A 
C_  B  ->  ( -.  x  e.  B  ->  -.  x  e.  A
) )
32anim2d 337 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  C  /\  -.  x  e.  B
)  ->  ( x  e.  C  /\  -.  x  e.  A ) ) )
4 eldif 3162 . . 3  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
5 eldif 3162 . . 3  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
63, 4, 53imtr4g 205 . 2  |-  ( A 
C_  B  ->  (
x  e.  ( C 
\  B )  ->  x  e.  ( C  \  A ) ) )
76ssrdv 3185 1  |-  ( A 
C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2164    \ cdif 3150    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166
This theorem is referenced by:  sscond  3296  sbthlem1  7016  sbthlem2  7017
  Copyright terms: Public domain W3C validator