ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsresg Unicode version

Theorem setsresg 11997
Description: The structure replacement function does not affect the value of  S away from  A. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.)
Assertion
Ref Expression
setsresg  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )

Proof of Theorem setsresg
StepHypRef Expression
1 opexg 4150 . . . . 5  |-  ( ( A  e.  W  /\  B  e.  X )  -> 
<. A ,  B >.  e. 
_V )
2 setsvalg 11989 . . . . 5  |-  ( ( S  e.  V  /\  <. A ,  B >.  e. 
_V )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
31, 2sylan2 284 . . . 4  |-  ( ( S  e.  V  /\  ( A  e.  W  /\  B  e.  X
) )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
433impb 1177 . . 3  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( S sSet  <. A ,  B >. )  =  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } ) )
54reseq1d 4818 . 2  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) ) )
6 resundir 4833 . . 3  |-  ( ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) )  =  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  u.  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) ) )
7 dmsnopg 5010 . . . . . . . . 9  |-  ( B  e.  X  ->  dom  {
<. A ,  B >. }  =  { A }
)
873ad2ant3 1004 . . . . . . . 8  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  dom  { <. A ,  B >. }  =  { A } )
9 eqimss 3151 . . . . . . . 8  |-  ( dom 
{ <. A ,  B >. }  =  { A }  ->  dom  { <. A ,  B >. }  C_  { A } )
108, 9syl 14 . . . . . . 7  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  dom  { <. A ,  B >. }  C_  { A } )
1110sscond 3213 . . . . . 6  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( _V  \  { A } )  C_  ( _V  \  dom  { <. A ,  B >. } ) )
12 resabs1 4848 . . . . . 6  |-  ( ( _V  \  { A } )  C_  ( _V  \  dom  { <. A ,  B >. } )  ->  ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )
1311, 12syl 14 . . . . 5  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S  |`  ( _V  \  dom  { <. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  =  ( S  |`  ( _V  \  { A } ) ) )
14 dmres 4840 . . . . . . 7  |-  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  ( ( _V  \  { A } )  i^i  dom  {
<. A ,  B >. } )
15 disj2 3418 . . . . . . . 8  |-  ( ( ( _V  \  { A } )  i^i  dom  {
<. A ,  B >. } )  =  (/)  <->  ( _V  \  { A } ) 
C_  ( _V  \  dom  { <. A ,  B >. } ) )
1611, 15sylibr 133 . . . . . . 7  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( _V  \  { A } )  i^i 
dom  { <. A ,  B >. } )  =  (/) )
1714, 16syl5eq 2184 . . . . . 6  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  =  (/) )
18 relres 4847 . . . . . . 7  |-  Rel  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )
19 reldm0 4757 . . . . . . 7  |-  ( Rel  ( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  ->  (
( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  =  (/)  <->  dom  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/) ) )
2018, 19ax-mp 5 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/)  <->  dom  ( {
<. A ,  B >. }  |`  ( _V  \  { A } ) )  =  (/) )
2117, 20sylibr 133 . . . . 5  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( { <. A ,  B >. }  |`  ( _V  \  { A }
) )  =  (/) )
2213, 21uneq12d 3231 . . . 4  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  u.  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) ) )  =  ( ( S  |`  ( _V  \  { A }
) )  u.  (/) ) )
23 un0 3396 . . . 4  |-  ( ( S  |`  ( _V  \  { A } ) )  u.  (/) )  =  ( S  |`  ( _V  \  { A }
) )
2422, 23syl6eq 2188 . . 3  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  |`  ( _V  \  { A }
) )  u.  ( { <. A ,  B >. }  |`  ( _V  \  { A } ) ) )  =  ( S  |`  ( _V  \  { A } ) ) )
256, 24syl5eq 2184 . 2  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( ( S  |`  ( _V  \  dom  {
<. A ,  B >. } ) )  u.  { <. A ,  B >. } )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A } ) ) )
265, 25eqtrd 2172 1  |-  ( ( S  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( S sSet  <. A ,  B >. )  |`  ( _V  \  { A } ) )  =  ( S  |`  ( _V  \  { A }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   <.cop 3530   dom cdm 4539    |` cres 4541   Rel wrel 4544  (class class class)co 5774   sSet csts 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sets 11966
This theorem is referenced by:  setsabsd  11998  setsslnid  12010
  Copyright terms: Public domain W3C validator