ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sscond GIF version

Theorem sscond 3296
Description: If 𝐴 is contained in 𝐵, then (𝐶𝐵) is contained in (𝐶𝐴). Deduction form of sscon 3293. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
sscond (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))

Proof of Theorem sscond
StepHypRef Expression
1 ssdifd.1 . 2 (𝜑𝐴𝐵)
2 sscon 3293 . 2 (𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
31, 2syl 14 1 (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3150  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166
This theorem is referenced by:  ssdif2d  3298  setsresg  12656
  Copyright terms: Public domain W3C validator