Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 | |
sstrd.2 |
Ref | Expression |
---|---|
sstrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | . 2 | |
2 | sstrd.2 | . 2 | |
3 | sstr 3136 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sstrid 3139 sstrdi 3140 ssdif2d 3246 tfisi 4545 funss 5188 fssxp 5336 fvmptssdm 5551 suppssfv 6025 suppssov1 6026 tposss 6190 tfrlem1 6252 tfrlemibfn 6272 tfr1onlembfn 6288 tfr1onlemubacc 6290 tfr1onlemres 6293 tfrcllembfn 6301 tfrcllemubacc 6303 tfrcllemres 6306 ecinxp 6552 undifdc 6865 sbthlem1 6898 iseqf1olemnab 10380 isumss 11281 prodssdc 11479 ennnfoneleminc 12123 strsetsid 12194 strleund 12249 ntrss 12490 neiint 12516 neiss 12521 restopnb 12552 iscnp4 12589 blssps 12798 blss 12799 xmettx 12881 tgqioo 12918 rescncf 12939 suplociccreex 12973 suplociccex 12974 dvbss 13025 dvbsssg 13026 dvfgg 13028 dvcnp2cntop 13034 dvcn 13035 dvaddxxbr 13036 dvmulxxbr 13037 dvcoapbr 13042 |
Copyright terms: Public domain | W3C validator |