| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| sstrd.1 |
|
| sstrd.2 |
|
| Ref | Expression |
|---|---|
| sstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrd.1 |
. 2
| |
| 2 | sstrd.2 |
. 2
| |
| 3 | sstr 3209 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sstrid 3212 sstrdi 3213 ssdif2d 3320 tfisi 4653 funss 5309 fssxp 5463 fvmptssdm 5687 suppssfv 6177 suppssov1 6178 tposss 6355 tfrlem1 6417 tfrlemibfn 6437 tfr1onlembfn 6453 tfr1onlemubacc 6455 tfr1onlemres 6458 tfrcllembfn 6466 tfrcllemubacc 6468 tfrcllemres 6471 ecinxp 6720 undifdc 7047 sbthlem1 7085 seqsplitg 10671 iseqf1olemnab 10683 seqf1oglem2a 10700 fiubm 11010 swrdval2 11142 isumss 11817 prodssdc 12015 ennnfoneleminc 12897 strsetsid 12980 strleund 13050 strext 13052 imasaddvallemg 13262 subsubm 13430 subsubg 13648 subgintm 13649 subsubrng 14091 subsubrg 14122 lssintclm 14261 lspss 14276 lspun 14279 lsslsp 14306 ntrss 14706 neiint 14732 neiss 14737 restopnb 14768 iscnp4 14805 blssps 15014 blss 15015 xmettx 15097 tgqioo 15142 rescncf 15168 suplociccreex 15211 suplociccex 15212 dvbss 15272 dvbsssg 15273 dvfgg 15275 dvidsslem 15280 dvconstss 15285 dvcnp2cntop 15286 dvcn 15287 dvaddxxbr 15288 dvmulxxbr 15289 dvcoapbr 15294 |
| Copyright terms: Public domain | W3C validator |