![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sstrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sstrd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sstr 3188 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sstrid 3191 sstrdi 3192 ssdif2d 3299 tfisi 4620 funss 5274 fssxp 5422 fvmptssdm 5643 suppssfv 6128 suppssov1 6129 tposss 6301 tfrlem1 6363 tfrlemibfn 6383 tfr1onlembfn 6399 tfr1onlemubacc 6401 tfr1onlemres 6404 tfrcllembfn 6412 tfrcllemubacc 6414 tfrcllemres 6417 ecinxp 6666 undifdc 6982 sbthlem1 7018 seqsplitg 10563 iseqf1olemnab 10575 seqf1oglem2a 10592 fiubm 10902 isumss 11537 prodssdc 11735 ennnfoneleminc 12571 strsetsid 12654 strleund 12724 strext 12726 imasaddvallemg 12901 subsubm 13058 subsubg 13270 subgintm 13271 subsubrng 13713 subsubrg 13744 lssintclm 13883 lspss 13898 lspun 13901 lsslsp 13928 ntrss 14298 neiint 14324 neiss 14329 restopnb 14360 iscnp4 14397 blssps 14606 blss 14607 xmettx 14689 tgqioo 14734 rescncf 14760 suplociccreex 14803 suplociccex 14804 dvbss 14864 dvbsssg 14865 dvfgg 14867 dvidsslem 14872 dvconstss 14877 dvcnp2cntop 14878 dvcn 14879 dvaddxxbr 14880 dvmulxxbr 14881 dvcoapbr 14886 |
Copyright terms: Public domain | W3C validator |