| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| sstrd.1 |
|
| sstrd.2 |
|
| Ref | Expression |
|---|---|
| sstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrd.1 |
. 2
| |
| 2 | sstrd.2 |
. 2
| |
| 3 | sstr 3201 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sstrid 3204 sstrdi 3205 ssdif2d 3312 tfisi 4635 funss 5290 fssxp 5443 fvmptssdm 5664 suppssfv 6154 suppssov1 6155 tposss 6332 tfrlem1 6394 tfrlemibfn 6414 tfr1onlembfn 6430 tfr1onlemubacc 6432 tfr1onlemres 6435 tfrcllembfn 6443 tfrcllemubacc 6445 tfrcllemres 6448 ecinxp 6697 undifdc 7021 sbthlem1 7059 seqsplitg 10634 iseqf1olemnab 10646 seqf1oglem2a 10663 fiubm 10973 swrdval2 11104 isumss 11702 prodssdc 11900 ennnfoneleminc 12782 strsetsid 12865 strleund 12935 strext 12937 imasaddvallemg 13147 subsubm 13315 subsubg 13533 subgintm 13534 subsubrng 13976 subsubrg 14007 lssintclm 14146 lspss 14161 lspun 14164 lsslsp 14191 ntrss 14591 neiint 14617 neiss 14622 restopnb 14653 iscnp4 14690 blssps 14899 blss 14900 xmettx 14982 tgqioo 15027 rescncf 15053 suplociccreex 15096 suplociccex 15097 dvbss 15157 dvbsssg 15158 dvfgg 15160 dvidsslem 15165 dvconstss 15170 dvcnp2cntop 15171 dvcn 15172 dvaddxxbr 15173 dvmulxxbr 15174 dvcoapbr 15179 |
| Copyright terms: Public domain | W3C validator |