| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
| Ref | Expression |
|---|---|
| sstrd.1 |
|
| sstrd.2 |
|
| Ref | Expression |
|---|---|
| sstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrd.1 |
. 2
| |
| 2 | sstrd.2 |
. 2
| |
| 3 | sstr 3232 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sstrid 3235 sstrdi 3236 ssdif2d 3343 tfisi 4678 funss 5336 fssxp 5490 fvmptssdm 5718 suppssfv 6212 suppssov1 6213 tposss 6390 tfrlem1 6452 tfrlemibfn 6472 tfr1onlembfn 6488 tfr1onlemubacc 6490 tfr1onlemres 6493 tfrcllembfn 6501 tfrcllemubacc 6503 tfrcllemres 6506 ecinxp 6755 undifdc 7082 sbthlem1 7120 seqsplitg 10706 iseqf1olemnab 10718 seqf1oglem2a 10735 fiubm 11045 swrdval2 11178 isumss 11897 prodssdc 12095 ennnfoneleminc 12977 strsetsid 13060 strleund 13131 strext 13133 imasaddvallemg 13343 subsubm 13511 subsubg 13729 subgintm 13730 subsubrng 14172 subsubrg 14203 lssintclm 14342 lspss 14357 lspun 14360 lsslsp 14387 ntrss 14787 neiint 14813 neiss 14818 restopnb 14849 iscnp4 14886 blssps 15095 blss 15096 xmettx 15178 tgqioo 15223 rescncf 15249 suplociccreex 15292 suplociccex 15293 dvbss 15353 dvbsssg 15354 dvfgg 15356 dvidsslem 15361 dvconstss 15366 dvcnp2cntop 15367 dvcn 15368 dvaddxxbr 15369 dvmulxxbr 15370 dvcoapbr 15375 |
| Copyright terms: Public domain | W3C validator |