| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) | 
| Ref | Expression | 
|---|---|
| sstrd.1 | 
 | 
| sstrd.2 | 
 | 
| Ref | Expression | 
|---|---|
| sstrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstrd.1 | 
. 2
 | |
| 2 | sstrd.2 | 
. 2
 | |
| 3 | sstr 3191 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sstrid 3194 sstrdi 3195 ssdif2d 3302 tfisi 4623 funss 5277 fssxp 5425 fvmptssdm 5646 suppssfv 6131 suppssov1 6132 tposss 6304 tfrlem1 6366 tfrlemibfn 6386 tfr1onlembfn 6402 tfr1onlemubacc 6404 tfr1onlemres 6407 tfrcllembfn 6415 tfrcllemubacc 6417 tfrcllemres 6420 ecinxp 6669 undifdc 6985 sbthlem1 7023 seqsplitg 10581 iseqf1olemnab 10593 seqf1oglem2a 10610 fiubm 10920 isumss 11556 prodssdc 11754 ennnfoneleminc 12628 strsetsid 12711 strleund 12781 strext 12783 imasaddvallemg 12958 subsubm 13115 subsubg 13327 subgintm 13328 subsubrng 13770 subsubrg 13801 lssintclm 13940 lspss 13955 lspun 13958 lsslsp 13985 ntrss 14355 neiint 14381 neiss 14386 restopnb 14417 iscnp4 14454 blssps 14663 blss 14664 xmettx 14746 tgqioo 14791 rescncf 14817 suplociccreex 14860 suplociccex 14861 dvbss 14921 dvbsssg 14922 dvfgg 14924 dvidsslem 14929 dvconstss 14934 dvcnp2cntop 14935 dvcn 14936 dvaddxxbr 14937 dvmulxxbr 14938 dvcoapbr 14943 | 
| Copyright terms: Public domain | W3C validator |