Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstrd | Unicode version |
Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
sstrd.1 | |
sstrd.2 |
Ref | Expression |
---|---|
sstrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | . 2 | |
2 | sstrd.2 | . 2 | |
3 | sstr 3150 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sstrid 3153 sstrdi 3154 ssdif2d 3261 tfisi 4564 funss 5207 fssxp 5355 fvmptssdm 5570 suppssfv 6046 suppssov1 6047 tposss 6214 tfrlem1 6276 tfrlemibfn 6296 tfr1onlembfn 6312 tfr1onlemubacc 6314 tfr1onlemres 6317 tfrcllembfn 6325 tfrcllemubacc 6327 tfrcllemres 6330 ecinxp 6576 undifdc 6889 sbthlem1 6922 iseqf1olemnab 10423 fiubm 10741 isumss 11332 prodssdc 11530 ennnfoneleminc 12344 strsetsid 12427 strleund 12483 ntrss 12759 neiint 12785 neiss 12790 restopnb 12821 iscnp4 12858 blssps 13067 blss 13068 xmettx 13150 tgqioo 13187 rescncf 13208 suplociccreex 13242 suplociccex 13243 dvbss 13294 dvbsssg 13295 dvfgg 13297 dvcnp2cntop 13303 dvcn 13304 dvaddxxbr 13305 dvmulxxbr 13306 dvcoapbr 13311 |
Copyright terms: Public domain | W3C validator |