ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raldifb Unicode version

Theorem raldifb 3299
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 263 . . . 4  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  A  ->  ( x  e/  B  ->  ph )
) )
21bicomi 132 . . 3  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( (
x  e.  A  /\  x  e/  B )  ->  ph ) )
3 df-nel 2460 . . . . . 6  |-  ( x  e/  B  <->  -.  x  e.  B )
43anbi2i 457 . . . . 5  |-  ( ( x  e.  A  /\  x  e/  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
5 eldif 3162 . . . . . 6  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
65bicomi 132 . . . . 5  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  ( A  \  B ) )
74, 6bitri 184 . . . 4  |-  ( ( x  e.  A  /\  x  e/  B )  <->  x  e.  ( A  \  B ) )
87imbi1i 238 . . 3  |-  ( ( ( x  e.  A  /\  x  e/  B )  ->  ph )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
92, 8bitri 184 . 2  |-  ( ( x  e.  A  -> 
( x  e/  B  ->  ph ) )  <->  ( x  e.  ( A  \  B
)  ->  ph ) )
109ralbii2 2504 1  |-  ( A. x  e.  A  (
x  e/  B  ->  ph )  <->  A. x  e.  ( A  \  B )
ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164    e/ wnel 2459   A.wral 2472    \ cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-v 2762  df-dif 3155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator