| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdif2d | GIF version | ||
| Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssdif2d.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| ssdif2d | ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif2d.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
| 2 | 1 | sscond 3318 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐴 ∖ 𝐶)) |
| 3 | ssdifd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | 3 | ssdifd 3317 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| 5 | 2, 4 | sstrd 3211 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∖ cdif 3171 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |