| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssdif2d | GIF version | ||
| Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssdif2d.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| ssdif2d | ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif2d.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
| 2 | 1 | sscond 3341 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐴 ∖ 𝐶)) |
| 3 | ssdifd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | 3 | ssdifd 3340 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| 5 | 2, 4 | sstrd 3234 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∖ cdif 3194 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |