ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdif2d GIF version

Theorem ssdif2d 3302
Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴𝐷) is contained in (𝐵𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
ssdif2d.2 (𝜑𝐶𝐷)
Assertion
Ref Expression
ssdif2d (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3 (𝜑𝐶𝐷)
21sscond 3300 . 2 (𝜑 → (𝐴𝐷) ⊆ (𝐴𝐶))
3 ssdifd.1 . . 3 (𝜑𝐴𝐵)
43ssdifd 3299 . 2 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
52, 4sstrd 3193 1 (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3154  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator